Feeds

Boffins build all-silicon CNOT gate

Only this time, ‘it’s quantum innit’

Security for virtualized datacentres

One of the challenges of putting quantum computing theory into practice is replacing large laboratory setups with integrated devices. A group of Cambridge researchers says it has demonstrated that a quantum controlled NOT gate can be implemented all in silicon devices.

The researchers, from Toshiba’s Cambridge Research Laboratory and the Cavendish Laboratory at Cambridge, say they have demonstrated a two-qubit gate in which the emitter, optical circuits, and detectors have all been implemented in silicon, “a promising approach towards creating a fully integrated device for scalable quantum computing”.

The researchers’ paper on Arxiv notes that the CNOT gate is important since, in combination with single-qubit gates, it can be “used to perform any quantum operation”.

Their emitter is an indium arsenide (InAs) quantum dot in a 1.5 micron microcavity pillar. This structure, they say, has a good probability of producing indistinguishable pairs of photons, and has good collection efficiency (the photons have to be indistinguishable so as to maximize their interaction).

The emitted photons are then beam-split in a waveguide, with the refractive index between the core and cladding regions confining the photons within the structure. This implements a quantum CNOT gate in which the path taken by photons represents the quantum state of the system.

Although the circuit has been built using standard silicon processing kit, it does have to be cooled to 4.5 Kelvin. However, the researchers note that the scheme could be extended to incorporate multiple single photon sources, to handle multi-photon input states. Further integration of the photon source and detectors, they say, will reduce the chip’s current 1.25 x 32.5mm. ®

New hybrid storage solutions

More from The Register

next story
Apple iPhone 6: Missing sapphire glass screen FAIL explained
They just cannae do it in time, says analyst
Slap my Imp up: Bullfrog's Dungeon Keeper
Monsters need to earn a living too
Oh noes, fanbois! iPhone 6 Plus shipments 'DELAYED' in the UK
Is EMBIGGENED Apple mobile REALLY that popular?
Apple's big bang: iPhone 6, ANOTHER iPhone 6 Plus and WATCH OUT
Let's >sigh< see what Cupertino has been up to for the past year
The Apple Watch and CROTCH RUBBING. How are they related?
Plus: 'NostrilTime' wristjob vid action
Apple's SNEAKY plan: COPY ANDROID. Hello iPhone 6, Watch
Sizes, prices and all – but not for the wrist-o-puter
Apple Pay is a tidy payday for Apple with 0.15% cut, sources say
Cupertino slurps 15 cents from every $100 purchase
prev story

Whitepapers

Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.
Top 5 reasons to deploy VMware with Tegile
Data demand and the rise of virtualization is challenging IT teams to deliver storage performance, scalability and capacity that can keep up, while maximizing efficiency.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.