Feeds

Big Blue supers crunch kaon decay

Massive machines probe matter mystery

Beginner's guide to SSL certificates

Looking at the fundamental properties of matter can take some serious computing grunt.

Take the calculation needed to help understand kaon decay – a subatomic particle interaction that helps explain why the universe is made of matter rather than anti-matter: it soaked up 54 million processor hours on Argonne National Laboratory’s BlueGene/P supercomputer near Chicago, along with time on Columbia University’s QCDOC machine, Fermi National Lab’s USQCD (the US Center for Quantum Chromo-Dynamic) Ds cluster, and the UK’s Iridis cluster at the University of Southampton and the DIRAC facility.

The reason so much iron was needed: the kaon decay spans 18 orders of magnitude, which this Physorg article describes as akin to the size difference between “a single bacterium and the size of our entire solar system”. At the smallest scale, the decays measured in the experiment were 1/1000th of a femtometer.

“The actual kaon decay described by the calculation spans distance scales of nearly 18 orders of magnitude, from the shortest distances of one thousandth of a femtometer — far below the size of an atom, within which one type of quark decays into another — to the everyday scale of meters over which the decay is observed in the lab,” Brookhaven explains in its late March release.

Back in 1964, a Nobel-winning Brookhaven experiment observed CP (charge parity) violation, setting up a long-running mystery in physics that remains unsolved.

“The present calculation is a major step forward in a new kind of stringent checking of the Standard Model of particle physics — the theory that describes the fundamental particles of matter and their interactions — and how it relates to the problem of matter/antimatter asymmetry, one of the most profound questions in science today,” said Taku Izubuchi of the RIKEN BNL Research Center and BNL, a member of the research team hat published their findings in Physical Review Letters.

The research is seeking to quantify how much the kaon decay process departs from Standard Model predictions. This “unknown quantity” will then be hunted in calculations in the next generation of IBM supercomputers, BlueGene/Q. ®

Security for virtualized datacentres

More from The Register

next story
It's Big, it's Blue... it's simply FABLESS! IBM's chip-free future
Or why the reversal of globalisation ain't gonna 'appen
'Hmm, why CAN'T I run a water pipe through that rack of media servers?'
Leaving Las Vegas for Armenia kludging and Dubai dune bashing
Bitcasa bins $10-a-month Infinite storage offer
Firm cites 'low demand' plus 'abusers'
Facebook slurps 'paste sites' for STOLEN passwords, sprinkles on hash and salt
Zuck's ad empire DOESN'T see details in plain text. Phew!
CAGE MATCH: Microsoft, Dell open co-located bit barns in Oz
Whole new species of XaaS spawning in the antipodes
Microsoft and Dell’s cloud in a box: Instant Azure for the data centre
A less painful way to run Microsoft’s private cloud
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.