Big Blue supers crunch kaon decay

Massive machines probe matter mystery

3 Big data security analytics techniques

Looking at the fundamental properties of matter can take some serious computing grunt.

Take the calculation needed to help understand kaon decay – a subatomic particle interaction that helps explain why the universe is made of matter rather than anti-matter: it soaked up 54 million processor hours on Argonne National Laboratory’s BlueGene/P supercomputer near Chicago, along with time on Columbia University’s QCDOC machine, Fermi National Lab’s USQCD (the US Center for Quantum Chromo-Dynamic) Ds cluster, and the UK’s Iridis cluster at the University of Southampton and the DIRAC facility.

The reason so much iron was needed: the kaon decay spans 18 orders of magnitude, which this Physorg article describes as akin to the size difference between “a single bacterium and the size of our entire solar system”. At the smallest scale, the decays measured in the experiment were 1/1000th of a femtometer.

“The actual kaon decay described by the calculation spans distance scales of nearly 18 orders of magnitude, from the shortest distances of one thousandth of a femtometer — far below the size of an atom, within which one type of quark decays into another — to the everyday scale of meters over which the decay is observed in the lab,” Brookhaven explains in its late March release.

Back in 1964, a Nobel-winning Brookhaven experiment observed CP (charge parity) violation, setting up a long-running mystery in physics that remains unsolved.

“The present calculation is a major step forward in a new kind of stringent checking of the Standard Model of particle physics — the theory that describes the fundamental particles of matter and their interactions — and how it relates to the problem of matter/antimatter asymmetry, one of the most profound questions in science today,” said Taku Izubuchi of the RIKEN BNL Research Center and BNL, a member of the research team hat published their findings in Physical Review Letters.

The research is seeking to quantify how much the kaon decay process departs from Standard Model predictions. This “unknown quantity” will then be hunted in calculations in the next generation of IBM supercomputers, BlueGene/Q. ®

SANS - Survey on application security programs

More from The Register

next story
This time it's 'Personal': new Office 365 sub covers just two devices
Redmond also brings Office into Google's back yard
Dropbox defends fantastically badly timed Condoleezza Rice appointment
'Nothing is going to change with Dr. Rice's appointment,' file sharer promises
Bored with trading oil and gold? Why not flog some CLOUD servers?
Chicago Mercantile Exchange plans cloud spot exchange
Just what could be inside Dropbox's new 'Home For Life'?
Biz apps, messaging, photos, email, more storage – sorry, did you think there would be cake?
IT bods: How long does it take YOU to train up on new tech?
I'll leave my arrays to do the hard work, if you don't mind
Amazon reveals its Google-killing 'R3' server instances
A mega-memory instance that never forgets
Cisco reps flog Whiptail's Invicta arrays against EMC and Pure
Storage reseller report reveals who's selling what
prev story


Designing a defence for mobile apps
In this whitepaper learn the various considerations for defending mobile applications; from the mobile application architecture itself to the myriad testing technologies needed to properly assess mobile applications risk.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.