Feeds

Cloaked light detector sees without being seen

Invisible pixels a small, but large, step forward

Application security programs and practises

Physicists at the University of Pennsylvania and Stanford University have created a nearly-invisible photodetector, by exploiting the different ways that silicon and gold scatter light.

By tuning the nanoscale geometries of silicon nanowires, using a gold doping, the team has demonstrated that the destructive interference of the scattered light can render the device nearly invisible – while it is still able to operate as a photodetector.

The work, published in Nature Photonics (abstract as PDF), is based on the way that light interacts with, and produces currents in, the surfaces of metals and semiconductors (plasmonics).

Bright areas are bare silicon in a nanowire.

Dimmer gold-coated areas are plasmonically "cloaked".

Image: Stanford Nanocharacterization Lab

In the University of Pennsylvania demonstration, the light waves create a dipole (separation of positive and negative charges) in the two materials. The tuning of the surfaces results in a dipole in the gold that is equal in strength to that in the silicon, but opposite in sign. Where the equal-but-opposite dipoles meet, the material becomes invisible.

“We found that a carefully engineered gold shell dramatically alters the optical response of the silicon nanowire,” says Pengyu Fan, doctoral candidate from Standford University and lead author of the paper, in Stanford’s release.

“Light absorption in the wire drops slightly – by a factor of just four – but the scattering of light drops by 100 times due to the cloaking effect, becoming invisible.”

The universities say the cloaking effect works across much of the visible light spectrum, and even more usefully, it is not dependent on having exactly the right angle of incoming light. The effect is most dependent on the tuning of the metal-semiconductor combination – and it has been shown to work with other doping materials like copper and aluminium.

“If the dipoles do not align properly, the cloaking effect is lessened, or even lost,” said Fan. “Having the right amount of materials at the nanoscale, therefore, is key to producing the greatest degree of cloaking.”

One application cited by Stanford for the cloaking effect is in cameras and medical imaging, to reduce the inter-pixel crosstalk that can lead to blurring. ®

Build a business case: developing custom apps

More from The Register

next story
Just TWO climate committee MPs contradict IPCC: The two with SCIENCE degrees
'Greenhouse effect is real, but as for the rest of it ...'
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
Flamewars in SPAAACE: cooler fires hint at energy efficiency
Experiment aboard ISS shows we should all chill out for cleaner engines
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Application security programs and practises
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Securing Web Applications Made Simple and Scalable
Learn how automated security testing can provide a simple and scalable way to protect your web applications.