Feeds

Cloaked light detector sees without being seen

Invisible pixels a small, but large, step forward

Bridging the IT gap between rising business demands and ageing tools

Physicists at the University of Pennsylvania and Stanford University have created a nearly-invisible photodetector, by exploiting the different ways that silicon and gold scatter light.

By tuning the nanoscale geometries of silicon nanowires, using a gold doping, the team has demonstrated that the destructive interference of the scattered light can render the device nearly invisible – while it is still able to operate as a photodetector.

The work, published in Nature Photonics (abstract as PDF), is based on the way that light interacts with, and produces currents in, the surfaces of metals and semiconductors (plasmonics).

Bright areas are bare silicon in a nanowire.

Dimmer gold-coated areas are plasmonically "cloaked".

Image: Stanford Nanocharacterization Lab

In the University of Pennsylvania demonstration, the light waves create a dipole (separation of positive and negative charges) in the two materials. The tuning of the surfaces results in a dipole in the gold that is equal in strength to that in the silicon, but opposite in sign. Where the equal-but-opposite dipoles meet, the material becomes invisible.

“We found that a carefully engineered gold shell dramatically alters the optical response of the silicon nanowire,” says Pengyu Fan, doctoral candidate from Standford University and lead author of the paper, in Stanford’s release.

“Light absorption in the wire drops slightly – by a factor of just four – but the scattering of light drops by 100 times due to the cloaking effect, becoming invisible.”

The universities say the cloaking effect works across much of the visible light spectrum, and even more usefully, it is not dependent on having exactly the right angle of incoming light. The effect is most dependent on the tuning of the metal-semiconductor combination – and it has been shown to work with other doping materials like copper and aluminium.

“If the dipoles do not align properly, the cloaking effect is lessened, or even lost,” said Fan. “Having the right amount of materials at the nanoscale, therefore, is key to producing the greatest degree of cloaking.”

One application cited by Stanford for the cloaking effect is in cameras and medical imaging, to reduce the inter-pixel crosstalk that can lead to blurring. ®

Mobile application security vulnerability report

More from The Register

next story
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
All those new '5G standards'? Here's the science they rely on
Radio professor tells us how wireless will get faster in the real world
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Reducing security risks from open source software
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.