Feeds

Behind the lens of NASA's self-adapting ISS space telescope

A hunk of space glass this ain't

Providing a secure and efficient Helpdesk

Analysis Funding cutbacks and an arguably anti-science fiscal policy haven't stopped exciting new projects emerging from NASA's Jet Propulsion Laboratory (JPL) in La Cañada Flintridge, California.

We spoke to Dr Michael Sievers from JPL about one such project, cutely named the Optical Testbed and Integration on ISS eXperiment (OpTIIX). This novel optical telescope will be rocketed up to the International Space Station (ISS) in pieces, assembled by orbiting robots, and attached to the greenback-guzzling space station.

While in its early days, the ISS struggled to justify its enormous cost, experiments such as OpTIIX are now putting it to good use as a testbed for future large astronomical observatories.

OpTIIX is actually a collaboration between the JPL, Goddard Space Flight Center, Johnson Space Center and the Space Telescope Science Institute, with blastoff of the finished components planned for early 2015.

Although it's being billed as a science experiment, OpTIIX could revolutionise the way space telescopes are built and used.

The idea is to create an agile, adaptive telescope that will view the heavens via six "adaptive optics" primary mirror segments. These will focus light onto a secondary mirror that sends the light to two cameras located under the primary mirror. If it works, the self-adapting, morphing telescope will be far more cost-effective than the traditional approach of a single, monolithic-hunk-of-glass mirror.

Dr Sievers told The Reg: "The process of building large single-glass mirrors is very complex and expensive, and moreover requires demanding precision to achieve desired optical performance. By contrast, adaptive optics systems employ less stringently ground mirror segments that are actively controlled to achieve optical performance. Each segment can be tipped, tilted, and moved up and down, collaborating to resolve astronomical objects."

Each mirror can also be locally deformed to achieve the desired wavefront alignment.

The challenges being faced by the OpTIIX team are pretty extreme. The platform upon which the telescope is mounted won't exactly be stable: the ISS zips through low Earth orbit at around 17,500 mph while shaking like a Diamond Jubilee carriage crossing a cattle grid.

The telescope will also be affected by thermal variation, and of course the ISS orbital motion will affect line of sight. To compensate for these variances, Dr Sievers explains, "[t]he telescope control system receives inputs from star trackers and gyros that provide precise position and motion rates; laser metrology which precisely measures the distances between the primary mirror segments and the secondary mirror; and wavefront sensing cameras that measure optical prescription – just like optical prescriptions for eyeglasses."

The control system will be written in C and C++ by a team of 10 developers. The system will run on a high-performance computer with sophisticated flight software that performs the optical and line-of-sight measurements. When a NASA engineer describes a computer as "high performance" or flight software as "sophisticated", you know they mean it.

Many of the tests will be derived directly from the model. The importance of this aspect can't be underestimated, as the operational environment – the speeding, vibrating ISS – is at odds with the telescope's chief requirement: stability.

Cosmic-scale coding

As Dr Sievers explains: "We have to keep our camera on a planet or star for many minutes to get a good picture. This means that the camera needs to keep a lock on that target to within a fraction of a camera pixel so that we don't get a blurry image. We use star trackers, gyros, and GPS to make sure we are pointing to the right place, and a 'Fine Guidance Camera' measures our position jitter due to vibration. We compare the image centers to each other to see how much jitter there is and then send controls to a small, fast mirror to null the jitter."

With such precise requirements, the unit tests, driven from a SysML design, must prove that the system is entirely bug-free before it's shipped to the edge of space for our robotic overlords to assemble.

The design itself is validated as it's drafted up. The use cases and SysML models are developed hierarchically, and each level of the model is validated with the level above it to make sure it's complete and consistent.

OpTIIX is exciting because if the "adaptive optics" experiment is successful, it'll pave the way for much larger, free-flying telescopes in the future. While it's chiefly an experiment and a precursor to a new age of agile astronomy, OpTIIX will also be put to good use during its service lifetime, performing real science while bolted onto the rumbling ISS.

Dr Sievers added: "We will do real science with this telescope. The goal is to prove that it works well enough that we can do a free-flying and larger version some day." ®

Matt Stephens is an IT consultant in Central London. He co-authored Design Driven Testing: Test Smarter, Not Harder and founded Fingerpress Travel, a crowdsourced travel guide.

Internet Security Threat Report 2014

More from The Register

next story
MARS NEEDS WOMEN, claims NASA pseudo 'naut: They eat less
'Some might find this idea offensive' boffin admits
SECRET U.S. 'SPACE WARPLANE' set to return from SPY MISSION
Robot minishuttle X-37B returns after almost 2 years in orbit
LOHAN crash lands on CNN
Overflies Die Welt en route to lively US news vid
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
No sail: NASA spikes Sunjammer
'Solar sail' demonstrator project binned
America's super-secret X-37B plane returns to Earth after nearly TWO YEARS aloft
674 days in space for US Air Force's mystery orbital vehicle
Carry On Cosmonaut: Willful Child is a poor taste Star Trek parody
Cringeworthy, crude and crass jokes abound in Steven Erikson’s sci-fi debut
Origins of SEXUAL INTERCOURSE fished out of SCOTTISH LAKE
Fossil find proves it first happened 385 million years ago
Human spacecraft dodge COMET CHUNKS pelting off Mars
Odyssey orbiter yet to report, though - comet's trailing trash poses new threat
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Three 1TB solid state scorchers up for grabs
Big SSDs can be expensive but think big and think free because you could be the lucky winner of one of three 1TB Samsung SSD 840 EVO drives that we’re giving away worth over £300 apiece.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.