Physicists iron out lumps in quantum dots

Silicon part of the problem at the nano-scale

Top 5 reasons to deploy VMware with Tegile

Continuing to shrink the scale of electronics presents a host of problems, including the way surfaces interact with electrons. At the smallest scale, it's difficult to get a "ballistic" electron to follow a consistent path, something an international team of physicists hopes to solve.

In a paper published in Physical Review Letters (abstract), a group from the University of New South Wales, University of Oregon, Niels Bohr Institute and Cavendish Laboratory at Cambridge has demonstrated that removing dopants from a silicon substrate can help overcome the problem of unpredictable electron scattering at the quantum scale.

As they point out in their abstract, the issue is this: the electrostatic nature of dopants that provide the electrons for a device like a quantum dot lead to “unpredictable changes in the behavior of devices … each time they are cooled for use”. That unpredictability makes it hard to perform experiments with reproducible results.

“Impurities and defects in the semiconductor present a serious challenge” when working at the quantum scale, explained UNSW’s Professor Andrew Molich. Electrons passing across the surface of a quantum dot are scattered in a disordered fashion.

Solving this problem, the university explains has both theoretical and practical applications. Understanding how electrons’ wave-like nature affects transistor function is important as we try to shrink devices ever further; while more esoteric considerations include understanding “how classical chaos theory works in the quantum mechanical limit”, Molich explains.

While ultra-clean materials go some way to solving the problem, the electrostatic effect of the electrons in silicon doping has a “more subtle” effect on electron paths.

One aspect of the research was to demonstrate the magnitude of dopants’ effects. It had been assumed that surface irregularities, and the shape of the quantum device (whether it’s square or circular), were the most important, while the doping was insignificant. Repeated warming and cooling (towards zero Kelvin) of a quantum dot changed the electron paths each time, demonstrating the importance of the electrostatic effects.

UNSW’s Dr Andrew See, lead author of the paper, then demonstrated in his PhD thesis that removing the dopants meant electrons fired across the surface follow a much more predictable path.

“Ultimately, our work provides important insight into how to make better nanoscale electronic devices, ones where the properties are both more predictable and more consistent each time we use them,” Molich said. ®

Beginner's guide to SSL certificates

More from The Register

next story
PORTAL TO ELSEWHERE scried in small galaxy far, far away
Supermassive black hole dominates titchy star formation
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Edge Research Lab to tackle chilly LOHAN's final test flight
Our US allies to probe potential Vulture 2 servo freeze
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
Cracked it - Vulture 2 power podule fires servos for 4 HOURS
Pixhawk avionics juice issue sorted, onwards to Spaceport America
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story


Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.