Feeds

Physicists iron out lumps in quantum dots

Silicon part of the problem at the nano-scale

Build a business case: developing custom apps

Continuing to shrink the scale of electronics presents a host of problems, including the way surfaces interact with electrons. At the smallest scale, it's difficult to get a "ballistic" electron to follow a consistent path, something an international team of physicists hopes to solve.

In a paper published in Physical Review Letters (abstract), a group from the University of New South Wales, University of Oregon, Niels Bohr Institute and Cavendish Laboratory at Cambridge has demonstrated that removing dopants from a silicon substrate can help overcome the problem of unpredictable electron scattering at the quantum scale.

As they point out in their abstract, the issue is this: the electrostatic nature of dopants that provide the electrons for a device like a quantum dot lead to “unpredictable changes in the behavior of devices … each time they are cooled for use”. That unpredictability makes it hard to perform experiments with reproducible results.

“Impurities and defects in the semiconductor present a serious challenge” when working at the quantum scale, explained UNSW’s Professor Andrew Molich. Electrons passing across the surface of a quantum dot are scattered in a disordered fashion.

Solving this problem, the university explains has both theoretical and practical applications. Understanding how electrons’ wave-like nature affects transistor function is important as we try to shrink devices ever further; while more esoteric considerations include understanding “how classical chaos theory works in the quantum mechanical limit”, Molich explains.

While ultra-clean materials go some way to solving the problem, the electrostatic effect of the electrons in silicon doping has a “more subtle” effect on electron paths.

One aspect of the research was to demonstrate the magnitude of dopants’ effects. It had been assumed that surface irregularities, and the shape of the quantum device (whether it’s square or circular), were the most important, while the doping was insignificant. Repeated warming and cooling (towards zero Kelvin) of a quantum dot changed the electron paths each time, demonstrating the importance of the electrostatic effects.

UNSW’s Dr Andrew See, lead author of the paper, then demonstrated in his PhD thesis that removing the dopants meant electrons fired across the surface follow a much more predictable path.

“Ultimately, our work provides important insight into how to make better nanoscale electronic devices, ones where the properties are both more predictable and more consistent each time we use them,” Molich said. ®

The Essential Guide to IT Transformation

More from The Register

next story
Just TWO climate committee MPs contradict IPCC: The two with SCIENCE degrees
'Greenhouse effect is real, but as for the rest of it ...'
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
Flamewars in SPAAACE: cooler fires hint at energy efficiency
Experiment aboard ISS shows we should all chill out for cleaner engines
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
NASA Mars rover FINALLY equals 1973 Soviet benchmark
Yet to surpass ancient Greek one, however
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Backing up Big Data
Solving backup challenges and “protect everything from everywhere,” as we move into the era of big data management and the adoption of BYOD.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.