Feeds

Supersize shifting sand dunes stalk surface of Mars

New photos are key clue to cracking Red Planet's past

The Power of One Infographic

Pic NASA's Mars Reconnaissance Orbiter has found the wind blows much more fiercely across the surface of the Red Planet than previously thought - reshaping sand dunes at around the same rate as those on Earth.

Martian sand dunes rippling

Martian sand dunes rippling. Credit: NASA/JPL-Caltech/

Univ. of Arizona/JHU-APL

Boffins had theorised that Martian dust fields - which can be 200 feet (61 meters) deep - were simply slow moving remnants of features formed by a previous climate; a conclusion reached because Mars has an atmosphere that's only one per cent as dense as Earth's and gales are less frequent and weaker than our planet's.

However, images taken over a two-year period by the orbiter's High Resolution Imaging Science Experiment camera (HiRISE) show the sand whipping across the planet's surface. With entire dunes moving, the scientists can measure the volume of sand and thereby estimate what kind of erosion the sand is causing.

"No one had estimates of this flux before," Nathan Bridges, a planetary scientist at Johns Hopkins University, said in a canned statement. "We had seen with HiRISE that there was dune motion, but it was an open question how much sand could be moving. Now, we can answer that."

"Our new data shows wind activity is indeed a major agent of evolution of the landscape on Mars," said Jean-Philippe Avouac, a team leader at the California Institute of Technology. "This is important because it tells us something about the current state of Mars and how the planet is working today, geologically."

Boffins will be able to use the sand data to figure out why so much of the surface of Mars appears heavily eroded and when that erosion happened.

The study, published in Nature, used images of the Nili Patera sand dune field near the Martian equator. The researchers calculated that if someone could stand in the dunes and measure a one-metre width, they would see more than 1,500 litres of sand blow by them in an Earth year.

Knowing that means the boffins can estimate that rocks in the region would be worn away at about the same pace as rocks near sand dunes in Antarctica. ®

Eight steps to building an HP BladeSystem

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
MARS NEEDS OCEANS to support life - and so do exoplanets
Just being in the Goldilocks zone doesn't mean there'll be anyone to eat the porridge
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Forty-five years ago: FOOTPRINTS FOUND ON MOON
NASA won't be back any time soon, sadly
prev story

Whitepapers

Reducing security risks from open source software
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Application security programs and practises
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.