Feeds

Supersize shifting sand dunes stalk surface of Mars

New photos are key clue to cracking Red Planet's past

Intelligent flash storage arrays

Pic NASA's Mars Reconnaissance Orbiter has found the wind blows much more fiercely across the surface of the Red Planet than previously thought - reshaping sand dunes at around the same rate as those on Earth.

Martian sand dunes rippling

Martian sand dunes rippling. Credit: NASA/JPL-Caltech/

Univ. of Arizona/JHU-APL

Boffins had theorised that Martian dust fields - which can be 200 feet (61 meters) deep - were simply slow moving remnants of features formed by a previous climate; a conclusion reached because Mars has an atmosphere that's only one per cent as dense as Earth's and gales are less frequent and weaker than our planet's.

However, images taken over a two-year period by the orbiter's High Resolution Imaging Science Experiment camera (HiRISE) show the sand whipping across the planet's surface. With entire dunes moving, the scientists can measure the volume of sand and thereby estimate what kind of erosion the sand is causing.

"No one had estimates of this flux before," Nathan Bridges, a planetary scientist at Johns Hopkins University, said in a canned statement. "We had seen with HiRISE that there was dune motion, but it was an open question how much sand could be moving. Now, we can answer that."

"Our new data shows wind activity is indeed a major agent of evolution of the landscape on Mars," said Jean-Philippe Avouac, a team leader at the California Institute of Technology. "This is important because it tells us something about the current state of Mars and how the planet is working today, geologically."

Boffins will be able to use the sand data to figure out why so much of the surface of Mars appears heavily eroded and when that erosion happened.

The study, published in Nature, used images of the Nili Patera sand dune field near the Martian equator. The researchers calculated that if someone could stand in the dunes and measure a one-metre width, they would see more than 1,500 litres of sand blow by them in an Earth year.

Knowing that means the boffins can estimate that rocks in the region would be worn away at about the same pace as rocks near sand dunes in Antarctica. ®

Providing a secure and efficient Helpdesk

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
NASA rover Curiosity drills HOLE in MARS 'GOLF COURSE'
Joins 'traffic light' and perfect stony sphere on the Red Planet
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
Relive the death of Earth over and over again in Extinction Game
Apocalypse now, and tomorrow, and the next day, and the day after that ...
prev story

Whitepapers

A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.