Feeds

WTF is... Intel's Ivy Bridge

Inside Core i's third generation

  • alert
  • submit to reddit

Gartner critical capabilities for enterprise endpoint backup

Feature

Reg Hardware PC Week

Intel’s latest processor architecture, codenamed Ivy Bridge, is its previous one, Sandy Bridge, shrunk. Sandy Bridge chips, marketed as second-generation Core i CPUs, were produced using a 32nm process. Ivy Bridge is 22nm

Actually, there's a little bit more to it than that.

Intel Core i7-3770K processor speck

The Ivy Bridge die layout is indeed much the same as Sandy Bridge's. There are four 64-bit x86 processor cores, a memory controller and a graphics processor all integrated onto the same silicon die. Each CPU core has 64KB of Level 1 (L1) cache and 256KB of second level cache (L2) and all four cores and the graphics core share 8MB of L3 cache, called Smart Cache by Intel.

The die shrink from 32nm to 22nm allows Intel to pack in more transistors into an even smaller space. The Sandy Bridge 3.5GHz Core i7-2700K has 1.16 billion transistors on a 216mm² die. The Ivy Bridge equivalent, the i7-3770K, measures just 160mm² and contains 1.4 billion transistors - 21 per cent more.

Intel Ivy Bridge

What's new, according to Intel...

Intel Ivy Bridge

...and what is shares with Sandy Bridge

At the heart of the new fabrication process is the Intel’s Tri-Gate transistor technology, which the chip giant is calling the world’s first '3D' transistor. Traditionally, the transistors in a processor or any other silicon chip are to all intents and purposes flat, so they're considered to be 2D even though they're not literally so. The new Tri-Gate transistors have a fin that stands vertically up off the silicon substrate, hence the 3D tag.

This design helps with the real enemy of die shrinkage: electron leakage. A transistor is a switch, the on and off state determined by whether the "gate" allows current to flow from "source" to "drain".

As transistors get smaller - that 32nm and 22nm numbers the production process is named after record the size of the transistor - electrons can more easily pass through the device, even if it's turned off, thanks to the quirky properties of electrons and Quantum Mechanics.

Tri-Gate transistor structure

The traditional transistor design (left) and Intel's Tri-Gate structure (right). Wrapping the gate around the 'fin' channel cuts leakage

The new Tri-Gate design essentially increases the gate's surface area, making it much better at controlling electron flow - it can turn the current on and off more quickly than the traditional design can - and at reducing electron leakage.

And it allows more transistors to be added to a smaller space, which will be very useful for manufacturing even smaller dies in the future.

Boost IT visibility and business value

Next page: Graphics

More from The Register

next story
Kate Bush: Don't make me HAVE CONTACT with your iPHONE
Can't face sea of wobbling fondle implements. What happened to lighters, eh?
Apple takes blade to 13-inch MacBook Pro with Retina display
Shaves price, not screen on mid-2014 model
iPhone 6 flip tip slips in Aussie's clip: Apple's 'reversible USB' leaks
New plug not compatible with official Type-C, according to fresh rumors
The agony and ecstasy of SteamOS: WHERE ARE MY GAMES?
And yes it does need a fat HDD (or SSD, it's cool with either)
FEAST YOUR EYES: Samsung's Galaxy Alpha has an 'entirely new appearance'
Wow, it looks like nothing else on the market, for sure
YES YES YES! Apple patents mousy, pressure-sensing iVibrator
Fanbois prepare to experience the great Cupertin-O
Steve Jobs had BETTER BALLS than Atari, says Apple mouse designer
Xerox? Pff, not even in the same league as His Jobsiness
TV transport tech, part 1: From server to sofa at the touch of a button
You won't believe how much goes into today's telly tech
Apple analyst: fruity firm set to shift 75 million iPhones
We'll have some of whatever he's having please
prev story

Whitepapers

5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.