Feeds

Black hole swallows star in GALACTIC SUPER-GUZZLE!

Astroid-gazing telescope catches distant star flare-out

Remote control for virtualized desktops

With billions of galaxies to choose from, it shouldn’t be hard to catch, but it is. Astronomers are celebrating after capturing the whole sequence of a star falling into a supermassive black hole.

The event happens roughly once every 10,000 years per galaxy*, but you still have to be looking in the right place at the right time – and as a result, astronomers usually only catch the end of the event.

This time, however, Johns Hopkins University astronomer Suvi Gezari and her colleagues hit the jackpot, garnering enough information from the two billion light year-distant galactic flare to determine both the black hole mass and the type of star it consumed.

Finding mostly helium left behind by the event, Gezari’s paper in Nature (abstract) suggests that the doomed star was a red giant with a helium core. Hydrogen – the other key stellar fuel – is nearly absent from the sample, suggesting that the lighter element was long-ago stripped by the black hole, leaving helium to make up most of the ejected gas.

Before/after Flare (GALEX/Pan-STARRS1)
Source: Hubblesite.org - the flare-up from 2009 to 2010

Also important to the astronomers is that they had the good fortune to catch both the rising and falling emissions on multiple instruments, which let them gather radio, X-Ray, ultraviolet and spectroscopic data of the event.

Gezari’s group discovered the flare in May 2010, a transient dubbed PS1-10jh, using the visible Pan-STARRS 1 telescope in Hawaii; and at the same time, the NASA’s space-borne Galaxy Evolution Explorer saw a UV flare from the same region.

Pan-STARRS conducts a whole-sky survey multiple times per month – mostly to watch for near-Earth asteroids, but also handy for catching transients like PS1-10jh. The observing the rising emissions were also able to call in spectroscopic data from the Arizona-based Multiple Mirror Telescope (MMT).

“The glowing helium was a tracer for an extraordinarily hot accretion event,” Gezari says in this release.

“So that set off an alarm for us. And, the fact that no hydrogen was found set off a big alarm that this was not typical gas. You can't find gas like that lying around near the center of a galaxy. It's processed gas that has to have come from a stellar core. There's nothing about this event that could be easily explained by any other phenomenon.”

The Chandra X-Ray telescope was also used, to check the characteristics of the gas and make sure it wasn’t a flare-up in the galaxy. The speed of the gas is also a marker: the black hole had accelerated the helium to more than 32 million kilometers per hour.

The flare – and therefore the final death of the star – took around a month, with the glowing gases taking around another year to fade. ®

Bootnote: The “per galaxy” distinction is important. Various news outlets have stumbled on this point, calling the star-black hole approach a “once in 10,000 years” event. ®

Note: Thanks to the commenters who picked me up on an editing error that mis-identified "hydrogen" as a gas left behind, in the original version of this story.

Update: About the image: some commenters have had trouble working out what's going on. The top two images are UV, with more magnification on the right, showing the flare emerging. The bottom two are visual, showing the same sequence.

El Reg doesn't agree that they show different regions of space (although they're in slightly different field of view). What they do show, for example in object in the bottom-left corner, is that something quite faint in the visual spectrum can be quite loud in the UV. ®

Security for virtualized datacentres

More from The Register

next story
MEN: For pity's sake SLEEP with LOTS of WOMEN - and avoid Prostate Cancer
And, um, don't sleep with other men. If that's what worries you
Voyager 1 now EIGHTEEN LIGHT HOURS from home
Almost 20 BEEELION kilometres from Sol
HUGE SHARK as big as a WWII SUBMARINE died out, allowing whales to exist
Who'd win a fight: Megalodon or a German battleship?
Jim Beam me up, Scotty! WHISKY from SPAAACE returns to Earth
They're insured for $1m, before you thirsty folks make plans
ROGUE SAIL BOAT blocks SPACE STATION PODULE blastoff
Er, we think our ISS launch beats your fishing expedition
Comet Siding Spring revealed as flying molehill
Hiding from this space pimple isn't going to do humanity's reputation any good
BAE points electromagnetic projectile at US Army
Railguns for 'Future fighting vehicle'
LONG ARM of the SAUR: Brachially gifted dino bone conundrum solved
Deinocheirus mirificus was a bit of a knuckle dragger
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
New hybrid storage solutions
Tackling data challenges through emerging hybrid storage solutions that enable optimum database performance whilst managing costs and increasingly large data stores.
Business security measures using SSL
Examines the major types of threats to information security that businesses face today and the techniques for mitigating those threats.