Feeds

Unexpected nanotube heat transfer suggests new way to cool processors

Spooky action at a (small) distance

Intelligent flash storage arrays

A strange phenomenon observed at the University of Maryland could pave the way to new techniques for cooling electronics: when researchers passed a current through carbon nanotubes, they didn’t heat up – but other nearby objects did.

While still studying exactly what mechanism produces the phenomenon, the researchers report that when they passed a current through the carbon nanotubes, the tubes remained relatively cool, apparently transferring the heat directly to the silicon nitride substrate that hosted the tubes.

In what they’ve dubbed “remote Joule heating”, the scientists, led by then-student Kamal Baloch, found that the heating of the substrate was enough to melt metal particles on its surface.

The normal heating of metals carrying a current, Joule heating, happens when energy is transferred from the travelling electrons to the atoms in the wire, causing them to vibrate.

In the University of Maryland experiment, the researchers believe the transfer of heat from the carbon nanotubes to the substrate is being caused not by the direct contact of electrons colliding with atoms, but rather by electrical fields.

“We believe that the nanotube's electrons are creating electrical fields due to the current, and the substrate's atoms are directly responding to those fields,” says assistant professor John Cumings.

“The transfer of energy is taking place through these intermediaries, and not because the nanotube's electrons are bouncing off of the substrate's atoms. While there is some analogy to a microwave oven, the physics behind the two phenomena is actually very different.”

The observations were made using a technique called electron thermal microscopy, developed in Cumings’ laboratory, which maps where heat is generated in nanoscale devices.

Baloch says the phenomenon would be useful in semiconductor design, because it provides a way to design thermal properties independently of the electrical properties of a device. “This new mechanism of thermal transport would allow you to engineer your thermal conductor and electrical conductor separately, choosing the best properties for each without requiring the two to be the same material occupying the same region of space,” he said.

The next step in the research is to see what other materials might exhibit similar behavior. The research is published in Nature Nanotechnology, abstract here. ®

Choosing a cloud hosting partner with confidence

More from The Register

next story
SECRET U.S. 'SPACE WARPLANE' set to return from SPY MISSION
Robot minishuttle X-37B returns after almost 2 years in orbit
No sail: NASA spikes Sunjammer
'Solar sail' demonstrator project binned
LOHAN crash lands on CNN
Overflies Die Welt en route to lively US news vid
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
You can crunch it all you like, but the answer is NOT always in the data
Hear that, 'data journalists'? Our analytics prof holds forth
Carry On Cosmonaut: Willful Child is a poor taste Star Trek parody
Cringeworthy, crude and crass jokes abound in Steven Erikson’s sci-fi debut
Origins of SEXUAL INTERCOURSE fished out of SCOTTISH LAKE
Fossil find proves it first happened 385 million years ago
America's super-secret X-37B plane returns to Earth after nearly TWO YEARS aloft
674 days in space for US Air Force's mystery orbital vehicle
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
Win a year’s supply of chocolate
There is no techie angle to this competition so we're not going to pretend there is, but everyone loves chocolate so who cares.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.