Feeds

Unexpected nanotube heat transfer suggests new way to cool processors

Spooky action at a (small) distance

The smart choice: opportunity from uncertainty

A strange phenomenon observed at the University of Maryland could pave the way to new techniques for cooling electronics: when researchers passed a current through carbon nanotubes, they didn’t heat up – but other nearby objects did.

While still studying exactly what mechanism produces the phenomenon, the researchers report that when they passed a current through the carbon nanotubes, the tubes remained relatively cool, apparently transferring the heat directly to the silicon nitride substrate that hosted the tubes.

In what they’ve dubbed “remote Joule heating”, the scientists, led by then-student Kamal Baloch, found that the heating of the substrate was enough to melt metal particles on its surface.

The normal heating of metals carrying a current, Joule heating, happens when energy is transferred from the travelling electrons to the atoms in the wire, causing them to vibrate.

In the University of Maryland experiment, the researchers believe the transfer of heat from the carbon nanotubes to the substrate is being caused not by the direct contact of electrons colliding with atoms, but rather by electrical fields.

“We believe that the nanotube's electrons are creating electrical fields due to the current, and the substrate's atoms are directly responding to those fields,” says assistant professor John Cumings.

“The transfer of energy is taking place through these intermediaries, and not because the nanotube's electrons are bouncing off of the substrate's atoms. While there is some analogy to a microwave oven, the physics behind the two phenomena is actually very different.”

The observations were made using a technique called electron thermal microscopy, developed in Cumings’ laboratory, which maps where heat is generated in nanoscale devices.

Baloch says the phenomenon would be useful in semiconductor design, because it provides a way to design thermal properties independently of the electrical properties of a device. “This new mechanism of thermal transport would allow you to engineer your thermal conductor and electrical conductor separately, choosing the best properties for each without requiring the two to be the same material occupying the same region of space,” he said.

The next step in the research is to see what other materials might exhibit similar behavior. The research is published in Nature Nanotechnology, abstract here. ®

The Power of One Infographic

More from The Register

next story
World Solar Challenge contender claims new speed record
One charge sees Sunswift travel 500kms at over 100 km/h
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Beancounters tell NASA it's too poor to fly planned mega-rocket
Space Launch System would need another $400m and a lot of time
Jurassic squawk: Dinos were Earth's early FEATHERED friends
Boffins research: Ancient dinos may all have had 'potential' fluff
Bad back? Show some spine and stop popping paracetamol
Study finds common pain-killer doesn't reduce pain or shorten recovery
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.