Feeds

German scientists link two labs with ‘universal quantum network’

Communicating with entangled distant atoms

Bridging the IT gap between rising business demands and ageing tools

German researchers have demonstrated a technique that allows them to create entanglement between atoms in different places, using photons to put the atoms into an entangled state.

Quantum effects have already crept into the cryptography world, in which entangled pairs of photons are used for key exchange. However, in the new experiment, the researchers have gone a step further: they’ve combined two kinds of quantum systems to crate a more general purpose network.

The setup works like this: a single rubidium atom is trapped in a reflective optical cavity, at each node of the network, with nodes connected via an optical fibre. Each of those rubidium atoms can act as a qubit (ie, able to store a quantum state).

When the atom emits a photon, the qubit – that is the state of the atom emitting the photon – is encoded into the photon’s polarization, and the destination node then takes on the state of the qubit that emitted the photon.

This arrangement means that atoms can be used to store qubits, while the photons are use to transmit state. It solves a challenge in quantum communications, since while photons work very well to transmit quantum states, they’re very difficult to store.

Researcher Stephan Ritter of the Max Planck Institute of Quantum Optics explained to Scientific American that the combination of atomic and photonic qubits was proposed 15 years ago, but it’s difficult to achieve in practice because "if you want to use single atoms and single photons, as we do, they hardly interact".

That’s where the reflective cavity comes in: when the photon arrives at its destination, it can be reflected past the rubidium atom tens of thousands of times, improving the chance that the desired interaction will actually happen.

“The cavity enhances the coupling between the light field and the atom,” Ritter says.

Hence the experiment achieves the genuinely spooky: a read-write operation across two laboratories connected by around 60 meters of fibre, in which the receiving atom becomes entangled with the transmitter, even though there’s been no direct interaction between them.

That, Ritter says, could extend the application of the network even further: once two atoms are entangled, the quantum state of one depends on the quantum state of the other.

As noted at Photonics.com, it only takes a microsecond to achieve the entanglement, but the state lasts 100 microseconds. That means it would be possible to build a network of “quantum repeaters” that use quantum teleportation, rather than photons, to transmit information between different places.

“Entanglement of two systems separated by a large distance is a fascinating phenomenon in itself. However, it could also serve as a resource for the teleportation of quantum information. One day, this might not only make it possible to communicate quantum information over very large distances, but might enable an entire quantum Internet”, Ritter said.

The work is published in Nature. ®

Mobile application security vulnerability report

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
All those new '5G standards'? Here's the science they rely on
Radio professor tells us how wireless will get faster in the real world
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Microsoft's anti-bug breakthrough: Wire devs to BRAIN SCANNERS
Clippy: It looks your hands are shaking, are you sure you want to commit this code?
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Reducing security risks from open source software
Follow a few strategies and your organization can gain the full benefits of open source and the cloud without compromising the security of your applications.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.