Feeds

German scientists link two labs with ‘universal quantum network’

Communicating with entangled distant atoms

Protecting against web application threats using SSL

German researchers have demonstrated a technique that allows them to create entanglement between atoms in different places, using photons to put the atoms into an entangled state.

Quantum effects have already crept into the cryptography world, in which entangled pairs of photons are used for key exchange. However, in the new experiment, the researchers have gone a step further: they’ve combined two kinds of quantum systems to crate a more general purpose network.

The setup works like this: a single rubidium atom is trapped in a reflective optical cavity, at each node of the network, with nodes connected via an optical fibre. Each of those rubidium atoms can act as a qubit (ie, able to store a quantum state).

When the atom emits a photon, the qubit – that is the state of the atom emitting the photon – is encoded into the photon’s polarization, and the destination node then takes on the state of the qubit that emitted the photon.

This arrangement means that atoms can be used to store qubits, while the photons are use to transmit state. It solves a challenge in quantum communications, since while photons work very well to transmit quantum states, they’re very difficult to store.

Researcher Stephan Ritter of the Max Planck Institute of Quantum Optics explained to Scientific American that the combination of atomic and photonic qubits was proposed 15 years ago, but it’s difficult to achieve in practice because "if you want to use single atoms and single photons, as we do, they hardly interact".

That’s where the reflective cavity comes in: when the photon arrives at its destination, it can be reflected past the rubidium atom tens of thousands of times, improving the chance that the desired interaction will actually happen.

“The cavity enhances the coupling between the light field and the atom,” Ritter says.

Hence the experiment achieves the genuinely spooky: a read-write operation across two laboratories connected by around 60 meters of fibre, in which the receiving atom becomes entangled with the transmitter, even though there’s been no direct interaction between them.

That, Ritter says, could extend the application of the network even further: once two atoms are entangled, the quantum state of one depends on the quantum state of the other.

As noted at Photonics.com, it only takes a microsecond to achieve the entanglement, but the state lasts 100 microseconds. That means it would be possible to build a network of “quantum repeaters” that use quantum teleportation, rather than photons, to transmit information between different places.

“Entanglement of two systems separated by a large distance is a fascinating phenomenon in itself. However, it could also serve as a resource for the teleportation of quantum information. One day, this might not only make it possible to communicate quantum information over very large distances, but might enable an entire quantum Internet”, Ritter said.

The work is published in Nature. ®

Reducing the cost and complexity of web vulnerability management

More from The Register

next story
PORTAL TO ELSEWHERE scried in small galaxy far, far away
Supermassive black hole dominates titchy star formation
Bacon-related medical breakthrough wins Ig Nobel prize
Is there ANYTHING cured pork can't do?
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Edge Research Lab to tackle chilly LOHAN's final test flight
Our US allies to probe potential Vulture 2 servo freeze
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
Cracked it - Vulture 2 power podule fires servos for 4 HOURS
Pixhawk avionics juice issue sorted, onwards to Spaceport America
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.