Feeds

'Thermal cloak' designed, could solve major chip, spacecraft issues

Nuclear Mars cruisers, mega nano-electronics (... hmm)

Intelligent flash storage arrays

Top boffins in France have come up with a radical new take on the "cloaking" and invisible-shed physics breakthroughs of recent years. They have designed a technology which instead of bending microwaves or light can shield an object from heat - or concentrate heat upon it.

Heat 'cloak' concept. Credit: Sebastien Guenneau, Institut Fresnel, CNRS/AMU

Can't crack their shields! More power to the heat rays!

"Our key goal with this research was to control the way heat diffuses in a manner similar to those that have already been achieved for waves, such as light waves or sound waves," says Sebastien Guenneau, of Aix-Marseille uni and France's Centre National de la Recherche Scientifique (CRNS).

"Heat isn't a wave — it simply diffuses from hot to cold regions," Guenneau adds. "The mathematics and physics at play are much different."

For now designed only in two dimensions, Guenneau and his colleagues' approach involved shaping isotherms - lines showing density of heat flux transferring from point - so as to make heat travel around a given area rather than into it.

“We can design a cloak so that heat diffuses around an invisibility region, which is then protected from heat. Or we can force heat to concentrate in a small volume, which will then heat up very rapidly,” Guenneau says.

The new research will have engineers in many fields salivating, as control of heat is an issue in many forms of technology. <IT angle>Chip designers and other nano- or micro-electronic specialists will be noting Guenneau and his colleagues' work with interest, as heat is one of their main stumbling blocks.</IT angle>

Another field where the French boffinry would be of interest is spacecraft. Heat management in space is a nightmare, as there is no surrounding atmosphere (far less any handy water or anything) into which to dump surplus heat: typically the only way to cool anything is by radiation. This isn't an impossible challenge for the moment, as spacecraft don't generally generate much heat internally (the only exception being when firing rockets, and in a well-designed rocket much of the heat should be carried out in the exhaust gases). Even now, though, spacecraft heat management is a big deal and involves a lot of cumbersome equipment - so the new heat shielding/focusing tech could be a big deal right off. In addition to satellites and the like, it could perhaps be particularly handy in re-entry vehicles.

In future, when space travel has become a serious activity, it could be more important still. Real serious spacecraft able to carry people or viable cargoes on interplanetary voyages will need to generate serious amounts of power on board - far more than solar photovoltaic panels can offer, even if they didn't need to go far from the Sun. They will probably have to use nuclear power or some other method which will produce substantial amounts of waste heat, and stopping that heat from building up and melting the spacecraft will be a difficult challenge indeed. The new heat-director ideas from Guenneau and his colleagues could come in very handy here. (Though presumably inside the craft, as in vacuum heat doesn't diffuse - here it is indeed a wave.)

And for those applications where solar power remains viable, the concentrating applications of the new theory could also be useful.

We would just note, though, that like more conventional wave-bender ideas, this isn't a "cloak", it wouldn't arrive in the form of a fabric but a solid assembly of some sort. In other words it's a thermal shed, not a thermal cloak.

The new research is published here in the learned journal Optics Express. ®

Providing a secure and efficient Helpdesk

More from The Register

next story
MARS NEEDS WOMEN, claims NASA pseudo 'naut: They eat less
'Some might find this idea offensive' boffin admits
SECRET U.S. 'SPACE WARPLANE' set to return from SPY MISSION
Robot minishuttle X-37B returns after almost 2 years in orbit
LOHAN crash lands on CNN
Overflies Die Welt en route to lively US news vid
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
You can crunch it all you like, but the answer is NOT always in the data
Hear that, 'data journalists'? Our analytics prof holds forth
No sail: NASA spikes Sunjammer
'Solar sail' demonstrator project binned
America's super-secret X-37B plane returns to Earth after nearly TWO YEARS aloft
674 days in space for US Air Force's mystery orbital vehicle
Carry On Cosmonaut: Willful Child is a poor taste Star Trek parody
Cringeworthy, crude and crass jokes abound in Steven Erikson’s sci-fi debut
Origins of SEXUAL INTERCOURSE fished out of SCOTTISH LAKE
Fossil find proves it first happened 385 million years ago
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Cloud and hybrid-cloud data protection for VMware
Learn how quick and easy it is to configure backups and perform restores for VMware environments.
Three 1TB solid state scorchers up for grabs
Big SSDs can be expensive but think big and think free because you could be the lucky winner of one of three 1TB Samsung SSD 840 EVO drives that we’re giving away worth over £300 apiece.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.