Feeds

Multi-color laser created by UCSB scientists

Excitons with extra zing could make networks sing

Choosing a cloud hosting partner with confidence

A group of University of California Santa Barbara researchers is touting a new technique to create multi-coloured lasers.

The coherent light of lasers is created by pumping a suitable material with energy. The energy is absorbed by electrons in the material, which move briefly to a higher-energy state; when they shed that energy, it is given off as a photon – with the wavelength of the light determined by the resonant characteristics of the material (a simplified description).

Lasers with multiple wavelengths are usually created by mixing the outputs of different devices, but the UCSB approach is different: they’re persuading the material they’re pumping to emit multiple wavelengths, by pumping it with both near-infrared and terahertz-frequency beams.

It works like this: the material – in this case, nanostructures of gallium arsenide – is pumped with lasers of different wavelengths. The near-infrared beam creates excitons (electron-hole) pairs in the material; in other words, pulling the electron completely out of its orbit instead of lifting it into a higher-energy orbit.

The electron, however, retains its attraction to the hole it came from – and this is where the university has added its “secret sauce”, a second, more powerful terahertz beam. As explained by UCSB physics professor Mark Sherwin in the university’s announcement:

“The very strong, low-frequency free electron laser beam rips the electron away from the hole and accelerates it. As the low-frequency field oscillates, it causes the electron to come careening back to the hole."

The electron has excess energy because it has been accelerated, the statement notes, and when it slams back into the hole, the recombined electron-hole pair emits photons at new frequencies.

Even better, from a practical standpoint: in their paper for Nature (of which Sherwin is a co-author), the researchers say they can optimize the spacing of the multiple wavelengths emitted by their multi-color laser.

If miniaturized, that would give the multi-color laser a home in optical communications, where wavelength-division multiplexing (WDM) expands the carrying capacity of networks by using different wavelengths to carry different data streams.

All such an application would need is to replace the building-sized free-electron laser in the UCSB’s Broida Hall (so large because it’s tunable as well as very powerful) with a transistor laser operating in the terahertz range, Sherwin said. “Now that we’ve seen this phenomenon, we can start doing the hard work of putting the pieces together on a chip.” ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Canberra drone team dances a samba in Outback Challenge
CSIRO's 'missing bushwalker' found and watered
NASA rover Curiosity drills HOLE in MARS 'GOLF COURSE'
Joins 'traffic light' and perfect stony sphere on the Red Planet
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.