Feeds

'Now we understand what's required to explode a supernova' - NASA

Fortunately it isn't anything we've got lying about

5 things you didn’t know about cloud backup

Top space boffins say that the latest readings from an orbiting science instrument have unlocked the secrets of mighty "Type Ia" supernovae, events in which stars blow up with such violence that they destroy solar systems and outshine entire galaxies.

The new data come from NASA's Swift satellite, orbiting the Earth and sending back observations of short-wavelength radiation from Type Ia super-mega-explosions afar off in the deeps of space.

“Now, thanks to unprecedented X-ray and ultraviolet data from Swift, we have a clearer picture of what’s required to blow up these stars," says Stefan Immler, NASA astrophysicist involved in the research.

It's well known among astro-boffins that Type Ia supernovae originate with a remnant star called a white dwarf, which detonates when pushed to a critical mass. Just what's required to happen in the run up to the explosion, however, has been harder to pin down.

Two main scenarios had been considered possible: in one, the white dwarf sucks in and gobbles up matter from a companion normal star, so gaining mass until, overstuffed, it blows up with unimaginable violence. Alternatively, two white dwarfs might collide like vast hypermassive billiard balls leading to a cataclysmic blast.

In between sniffing gamma-ray bursts emitted from faraway black holes (its main task) Swift has been used to probe Ia supernovae. In two separate studies, featuring 60-odd of the superviolent blasts, boffins couldn't find any of the types of X-ray or ultraviolet emissions which would indicate that a giant star had been present at the explosion site - the immolation of such a vast star would cause a noticeable amount of these wavelengths to be produced.

Thus, the scientists conclude, if a companion star is present when Type Ia supernovae kick off, it is generally smaller than our own Sun - indeed, these results could suggest that the dwarf-conkers theory is actually the correct one.

Studies based on the data are set to be published in prestigious astroboffinry journals The Astrophysical Journal Letters and The Astrophysical Journal in April. They can be read in advance of press here and here. ®

Boost IT visibility and business value

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
China building SUPERSONIC SUBMARINE that travels in a BUBBLE
Shanghai to San Fran in two hours would be a trick, though
Cutting cancer rates: Data, models and a happy ending?
How surgery might be making cancer prognoses worse
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Brit balloon bod Bodnar overflies North Pole
B-64 amateur ultralight payload approaching second circumnavigation
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Scale data protection with your virtual environment
To scale at the rate of virtualization growth, data protection solutions need to adopt new capabilities and simplify current features.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?