Feeds

'Now we understand what's required to explode a supernova' - NASA

Fortunately it isn't anything we've got lying about

Secure remote control for conventional and virtual desktops

Top space boffins say that the latest readings from an orbiting science instrument have unlocked the secrets of mighty "Type Ia" supernovae, events in which stars blow up with such violence that they destroy solar systems and outshine entire galaxies.

The new data come from NASA's Swift satellite, orbiting the Earth and sending back observations of short-wavelength radiation from Type Ia super-mega-explosions afar off in the deeps of space.

“Now, thanks to unprecedented X-ray and ultraviolet data from Swift, we have a clearer picture of what’s required to blow up these stars," says Stefan Immler, NASA astrophysicist involved in the research.

It's well known among astro-boffins that Type Ia supernovae originate with a remnant star called a white dwarf, which detonates when pushed to a critical mass. Just what's required to happen in the run up to the explosion, however, has been harder to pin down.

Two main scenarios had been considered possible: in one, the white dwarf sucks in and gobbles up matter from a companion normal star, so gaining mass until, overstuffed, it blows up with unimaginable violence. Alternatively, two white dwarfs might collide like vast hypermassive billiard balls leading to a cataclysmic blast.

In between sniffing gamma-ray bursts emitted from faraway black holes (its main task) Swift has been used to probe Ia supernovae. In two separate studies, featuring 60-odd of the superviolent blasts, boffins couldn't find any of the types of X-ray or ultraviolet emissions which would indicate that a giant star had been present at the explosion site - the immolation of such a vast star would cause a noticeable amount of these wavelengths to be produced.

Thus, the scientists conclude, if a companion star is present when Type Ia supernovae kick off, it is generally smaller than our own Sun - indeed, these results could suggest that the dwarf-conkers theory is actually the correct one.

Studies based on the data are set to be published in prestigious astroboffinry journals The Astrophysical Journal Letters and The Astrophysical Journal in April. They can be read in advance of press here and here. ®

Next gen security for virtualised datacentres

More from The Register

next story
Gigantic toothless 'DRAGONS' dominated Earth's early skies
Gummy pterosaurs outlived toothy competitors
Vulture 2 takes a battering in 100km/h test run
Still in one piece, but we're going to need MORE POWER
TRIANGULAR orbits will help Rosetta to get up close with Comet 67P
Probe will be just 10km from Space Duck in October
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
'Leccy racer whacks petrols in Oz race
ELMOFO rakes in two wins in sanctioned race
What does a flashmob of 1,024 robots look like? Just like this
Sorry, Harvard, did you say kilobots or KILLER BOTS?
NASA's rock'n'roll shock: ROLLING STONE FOUND ON MARS
No sign of Ziggy Stardust and his band
Why your mum was WRONG about whiffy tattooed people
They're a future source of RENEWABLE ENERGY
prev story

Whitepapers

5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.