Feeds

'Now we understand what's required to explode a supernova' - NASA

Fortunately it isn't anything we've got lying about

Choosing a cloud hosting partner with confidence

Top space boffins say that the latest readings from an orbiting science instrument have unlocked the secrets of mighty "Type Ia" supernovae, events in which stars blow up with such violence that they destroy solar systems and outshine entire galaxies.

The new data come from NASA's Swift satellite, orbiting the Earth and sending back observations of short-wavelength radiation from Type Ia super-mega-explosions afar off in the deeps of space.

“Now, thanks to unprecedented X-ray and ultraviolet data from Swift, we have a clearer picture of what’s required to blow up these stars," says Stefan Immler, NASA astrophysicist involved in the research.

It's well known among astro-boffins that Type Ia supernovae originate with a remnant star called a white dwarf, which detonates when pushed to a critical mass. Just what's required to happen in the run up to the explosion, however, has been harder to pin down.

Two main scenarios had been considered possible: in one, the white dwarf sucks in and gobbles up matter from a companion normal star, so gaining mass until, overstuffed, it blows up with unimaginable violence. Alternatively, two white dwarfs might collide like vast hypermassive billiard balls leading to a cataclysmic blast.

In between sniffing gamma-ray bursts emitted from faraway black holes (its main task) Swift has been used to probe Ia supernovae. In two separate studies, featuring 60-odd of the superviolent blasts, boffins couldn't find any of the types of X-ray or ultraviolet emissions which would indicate that a giant star had been present at the explosion site - the immolation of such a vast star would cause a noticeable amount of these wavelengths to be produced.

Thus, the scientists conclude, if a companion star is present when Type Ia supernovae kick off, it is generally smaller than our own Sun - indeed, these results could suggest that the dwarf-conkers theory is actually the correct one.

Studies based on the data are set to be published in prestigious astroboffinry journals The Astrophysical Journal Letters and The Astrophysical Journal in April. They can be read in advance of press here and here. ®

Choosing a cloud hosting partner with confidence

More from The Register

next story
Renewable energy 'simply WON'T WORK': Top Google engineers
Windmills, solar, tidal - all a 'false hope', say Stanford PhDs
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
Post-pub nosh neckfiller: The MIGHTY Scotch egg
Off to the boozer? This delicacy might help mitigate the effects
I'M SO SORRY, sobs Rosetta Brit boffin in 'sexist' sexy shirt storm
'He is just being himself' says proud mum of larger-than-life physicist
NASA launches new climate model at SC14
75 days of supercomputing later ...
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Simon's says quantum computing will work
Boffins blast algorithm with half a dozen qubits
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Website security in corporate America
Find out how you rank among other IT managers testing your website's vulnerabilities.
Top 5 reasons to deploy VMware with Tegile
Data demand and the rise of virtualization is challenging IT teams to deliver storage performance, scalability and capacity that can keep up, while maximizing efficiency.