Feeds

Giant planet pileups in far-flung star systems: Computer says yes

Boffins crack stellar 'celebrity' migration riddle

Top 5 reasons to deploy VMware with Tegile

Top brainboxes armed with a British supercomputer say that they've cracked the riddle of just why it is that massive planets - spied across the vasty interstellar gulfs in recent times - tend to prefer certain orbits around their faraway parent stars.

"Our models offer a plausible explanation for the pile-ups of giant planets observed recently detected in exoplanet surveys," says Richard Alexander of Leicester uni.

It seems that known exoplanets, most of which are enormous gas giants on the lines of Jupiter or Saturn here in our solar system, are found mainly at distances around 1 Astronomical Unit (AU) from their own suns. This is the same distance as Earth is from our Sun.

We here on the Reg farflung-planets-glimpsed-across-the-vasty-gulfs-of-interstellar-space desk had sort of formed an unscientific impression that this might be because the techniques used to spot exoplanets struggle to see anything which is not a) vast and b) quite close to its parent star. But according to Alexander and his colleague Ilaria Pascucci of Arizona uni, this isn't true: as star systems form, they naturally tend to accumulate gas-giants at this sort of distance - our system is atypical in having them much further out.

"Our results show that the final distribution of planets does not vary smoothly with distance from the star, but instead has clear ‘deserts' – deficits of planets – and ‘pile-ups' of planets at particular locations," says Pascucci.

The two boffins' theory shows that as a young star system collapses onto its central sun, the interplay between the hot solar wind blasting material outward and gravity sucking it inward changes sharply according to distance bands, which results in a clear band from say 1 to 2 AU out. Gas-giant worlds naturally get moved inwards through this clear band and then achieve orbit once they hit the next band of dust and proto-stuff.

According to a Leicester uni statement announcing the new research:

Giant planets migrate inward before they finally settle on a stable orbit around their star. This happens because as the star draws in material from the protoplanetary disk, the planets are dragged along, like a celebrity caught in a crowd of fans.

However, the researchers discovered that once a giant planet encounters a gap cleared by photo-evaporation, it stays put.

"The planets either stop right before or behind the gap, creating a pile-up," explains Pascucci.

The two boffins confirmed their theory with the aid of some mighty number-crunching from the ALICE High Performance Computing Facility at Leicester uni. The resulting paper is to be published in hefty astro mag Monthly Notices of the Royal Astronomical Society, or you can read it online in advance here. ®

Beginner's guide to SSL certificates

More from The Register

next story
LIFE, JIM? Comet probot lander found 'ORGANICS' on far-off iceball
That's it for God, then – if Comet 67P has got complex molecules
Rosetta probot drilling DENIED: Philae has its 'LEG in the AIR'
NOT best position for scientific fulfillment
'Yes, yes... YES!' Philae lands on COMET 67P
Plucky probot aces landing on high-speed space rock - emotional scenes in Darmstadt
HUMAN DNA 'will be FOUND ON MOON' – rocking boffin Brian Cox
Crowdfund plan to stimulate Blighty's space programme
THERE it is! Philae comet lander FOUND in EXISTING Rosetta PICS
Crumb? Pixel? ALIEN? Better, it's a comet-catcher!
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
Post-pub nosh neckfiller: The MIGHTY Scotch egg
Off to the boozer? This delicacy might help mitigate the effects
I'M SO SORRY, sobs Rosetta Brit boffin in 'sexist' sexy shirt storm
'He is just being himself' says proud mum of larger-than-life physicist
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Choosing a cloud hosting partner with confidence
Download Choosing a Cloud Hosting Provider with Confidence to learn more about cloud computing - the new opportunities and new security challenges.
New hybrid storage solutions
Tackling data challenges through emerging hybrid storage solutions that enable optimum database performance whilst managing costs and increasingly large data stores.