Feeds

SUPERCOMPUTER vs your computer in bang-for-buck battle

iPad 2 pwns Cray-2? Wife’s desktop beats all?

Secure remote control for conventional and virtual desktops

HPC blog A couple of weeks ago I posted a blog here (Exascale by 2018: Crazy...or possible?) that looked at how long it took the industry to hit noteworthy HPC milestones. Chatter in the comments section (aside from the guy who assailed me for a typo, and for not explicitly calling out ‘per second’ denotations) discussed what these massive systems do and why they’re necessary.

But Reg readers' comments, plus others that I received via Twitter, raised some interesting questions that I’m going to attempt to answer – or at least sort of answer. The first is: just how much did these systems cost new?

When these systems came out, they were the biggest and baddest supercomputers in the world. But the price tag that the vendor attaches to a system in a press release and the actual price paid by the customer may have little or no relationship to each other or what the system cost to develop and build.

The price also varies depending on when in the product lifecycle you purchase the system. Buying the first one doesn’t mean that you’re necessarily paying the top price. If you’re the kind of customer who might buy boatloads of them, you would probably get a break. It also helps if you’re on the understanding side when it comes to performance qualification and bug fixes. Plus the right customer can validate a design, and that’s worth something to vendors.

supercomputing_no_1

In the table above, I did my best to find representative early-life prices for each system. It was easier to find prices for the later systems than for the CDC and Cray boxes. I found ranges of prices for the CDC and Cray-2 systems, so I took the average of those figures.

The final column adjusts those prices to 2010 dollars to level the playing field. Even though the cost of computing has gone down incredibly (as we’ll see below), the cost of BIG computing – the cost of the fastest system in the world – has increased considerably from the $50m CDC 6600 to the $101m IBM Roadrunner. The K computer is a bit of a special case. The $1.25bn figure supposedly represents the cost of design, development and the actual gear – but I don’t know if it’s an apples-to-apples comparison to the others.

The second theme among readers’ comments was: how do these levels of performance (and associated prices) relate to the systems that we use day in and day out? This required some more Jethro Bodine ciphering time; I figured I’d benchmark some of the systems in our offices and see how they came out.

I wanted to use Linpack, so I first needed to find a distribution that works on our Windows 7 systems here. Yeah, yeah, I know that I should set up a dual boot with Linux and then run a ‘real’ Linpack in order to get better numbers, but I do have a regular day job.

Intel has a downloadable Linpack benchmark here that I put on three of our office systems. After perusing the documentation, I ran through some trial runs with different problem sizes in order to establish a performance range. What I found is that, on our systems at least, using the largest ‘typical’ problem set of 40,000 equations seemed to pull out the best Linpack average and peak results.

Our pal Jack Dongarra, one of the founders of the Top500 list, ran Linpack on an Apple iPad 2 and reported that the tablet hit between 1.5-1.65 GFLOP/s, which is higher than the Cray-2 back in 1985.

In the New York Times story, he also discussed the possibility of clustering iPads into a competitive supercomputer. He didn’t seem to feel that it would be a good price performer when compared to existing supercomputers, something that my research below confirms.

Secure remote control for conventional and virtual desktops

More from The Register

next story
NSA SOURCE CODE LEAK: Information slurp tools to appear online
Now you can run your own intelligence agency
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
Cloud unicorns are extinct so DiData cloud mess was YOUR fault
Applications need to be built to handle TITSUP incidents
Stop the IoT revolution! We need to figure out packet sizes first
Researchers test 802.15.4 and find we know nuh-think! about large scale sensor network ops
Turnbull should spare us all airline-magazine-grade cloud hype
Box-hugger is not a dirty word, Minister. Box-huggers make the cloud WORK
SanDisk vows: We'll have a 16TB SSD WHOPPER by 2016
Flash WORM has a serious use for archived photos and videos
Astro-boffins start opening universe simulation data
Got a supercomputer? Want to simulate a universe? Here you go
Microsoft adds video offering to Office 365. Oh NOES, you'll need Adobe Flash
Lovely presentations... but not on your Flash-hating mobe
prev story

Whitepapers

Free virtual appliance for wire data analytics
The ExtraHop Discovery Edition is a free virtual appliance will help you to discover the performance of your applications across the network, web, VDI, database, and storage tiers.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
How to determine if cloud backup is right for your servers
Two key factors, technical feasibility and TCO economics, that backup and IT operations managers should consider when assessing cloud backup.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Business security measures using SSL
Examines the major types of threats to information security that businesses face today and the techniques for mitigating those threats.