Feeds

Bromine bomb drops toxic mercury fallout

Another reason to love old Arctic ice

Intelligent flash storage arrays

A “bromine explosion” in the Arctic back in 2008 has yielded a disturbing scientific analysis: the replacement of perennial sea-ice with younger seasonal ice could lead to mercury pollution in the Arctic.

In a new NASA-led study, American, Canadian, German and UK researchers believe they have identified the mechanism by which the melting ice cap alters the atmospheric concentration of bromine – and what happens to the bromine afterwards.

The study suggests that the reduction in perennial sea ice (reported by The Register on Wednesday) is intensifying the release of bromine into the atmosphere, with the twin results of depletion of ground-level ozone, and mercury being deposited into the Arctic.

The bromine processes – described as bromine explosions by team leader Son Nghiem from the Jet Propulsion Laboratory – take place because of the interaction between sea ice salt and sunlight in the Arctic’s low temperatures.

In the “bromine explosion”, the bromine released by the salty ice creates molecules of bromine monoxide in the atmosphere, which then reacts with gaseous mercury in the atmosphere. The resulting pollutant falls to Earth’s surface.

On the upside, bromine reacts with tropospheric ozone – which at ground level is a pollutant, in spite of its beneficial stratospheric role.

The study was launched with the aim of examining the nature of bromine explosions, which were first observed more than 20 years ago in Canada’s Arctic regions. The scientists “wanted to find if the explosions occur in the troposphere or higher in the stratosphere,” the NASA announcement says.

The satellite measurements used in this study came from six NASA, European Space Agency and Canadian Space Agency satellites, along with field observations, and a model of how air moves in the atmosphere.

The atmospheric model and the satellite observations agreed that Alaska’s Brooks Range, along with the Richardson and Mackenzie mountains in Canada, contain the atmospheric bromine, keeping it away from Alaska’s interior. This, the researchers say, means the bromine explosions take place below 2,000 meters.

The research was launched after observations in the spring of 2008 detected increased bromine concentrations in the atmosphere, observations which were verified by field observations.

2008, by no coincidence, was also the year in which perennial sea-ice reached its lowest recorded level (also discussed in this story). Its loss is partly replaced by seasonal ice, but the younger ice yields more bromine, for two reasons: it hasn’t undergone the leaching process that removes salt from sea ice; and it contains more of the high-salt crystals called “frost flowers”, which provide more salt to fuel bromine releases.

If sea-ice continues to be dominated by younger, saltier ice, Nghiem said, extreme Arctic cold spells will lead to more bromine explosions – and more mercury pollution. ®

Addendum: A commenter has asked a sensible question about the bromine: where does it come from? Forgive me for citing Wikipedia, but it's handy: it's present in typical seawater, "with a concentration of around 65 mg/L, which is around 0.2 percent of all dissolved salts." ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
Renewable energy 'simply WON'T WORK': Top Google engineers
Windmills, solar, tidal - all a 'false hope', say Stanford PhDs
The next big thing in medical science: POO TRANSPLANTS
Your brother's gonna die, kid, unless we can give him your, well ...
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
NASA launches new climate model at SC14
75 days of supercomputing later ...
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
Simon's says quantum computing will work
Boffins blast algorithm with half a dozen qubits
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
How to determine if cloud backup is right for your servers
Two key factors, technical feasibility and TCO economics, that backup and IT operations managers should consider when assessing cloud backup.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Getting ahead of the compliance curve
Learn about new services that make it easy to discover and manage certificates across the enterprise and how to get ahead of the compliance curve.