Feeds

Antibody transistor grabs gold

Immune system response self-assembles electronic connection

SANS - Survey on application security programs

The immune system response in which antibodies bind to specific molecules they recognize has been exploited to create a self-assembling protein-based transistor.

The Taiwanese researchers claiming the breakthrough say it could help overcome a difficult hurdle in the world of organic electronics: providing a repeatable way to “connect” organic molecules to electrical signals, without degrading the molecules.

The work, by Yu-Shiun Chen, Meng-Ye Hong and G. Steven Huang of the National Chiao Tung University, covers the three top-line items that constitute a transistor: it’s got a source and drain, with usable and convenient connections, and it can be gated using an applied voltage.

Organic molecular electronics is a popular research field, both for those trying to continue extending the lifetime of Moore’s Law and for research into flexible circuits. However, while organic molecules can be made to behave like electronic gates, it’s difficult to create repeatable connections to them without damaging the molecule.

The antibodies bind to gold nanoparticles to

create the protein-based transistor. Source: Nature

The self-assembly technique provides an approach that could solve this problem, the researchers say. They have isolated an immunoglobulin G antibody, whose particular characteristic is that it recognizes 5 nanometer-diameter gold nanoparticles.

As I understand it, the antibody then does what antibodies do: it binds to the target molecule (rather like a human anibody might bind to a rhinovirus to try and fight off a head cold). By binding to two gold nanoparticles, this “anti-nanoparticle” forms a junction that can be connected to the outside world.

When a voltage is applied to the device, the researchers say, it behaves like a transistor gate. Not only that: the researchers also say that “by attaching CdSe quantum dots to the antibody, we show that the protein transistor can also be gated by an applied optical field.”

The research is published in Nature (abstract). ®

3 Big data security analytics techniques

More from The Register

next story
Most Americans doubt Big Bang, not too sure about evolution, climate change – survey
Science no match for religion, politics, business interests
KILLER SPONGES menacing California coastline
Surfers are safe, crustaceans less so
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
LOHAN and the amazing technicolor spaceplane
Our Vulture 2 livery is wrapped, and it's les noix du mutt
Liftoff! SpaceX Falcon 9 lifts Dragon on third resupply mission to ISS
SpaceX snaps smartly into one-second launch window
Opportunity selfie: Martian winds have given the spunky ol' rover a spring cleaning
Power levels up 70 per cent as the rover keeps on truckin'
Elon Musk's LEAKY THRUSTER gas stalls Space Station supply run
Helium seeps from Falcon 9 first stage, delays new legs for NASA robonaut
prev story

Whitepapers

Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.
Combat fraud and increase customer satisfaction
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
SANS - Survey on application security programs
In this whitepaper learn about the state of application security programs and practices of 488 surveyed respondents, and discover how mature and effective these programs are.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.