Feeds

All-optical RAM to clear comms bottleneck

NTT shows off nanowatt optical memory

Choosing a cloud hosting partner with confidence

Japanese researchers are claiming a breakthrough in all-optical memory, one of the key bottlenecks remaining in the optical communications world.

The high throughput of optical communications systems brings its own problem: any function that can’t be performed in the optical domain demands an opto-electric conversion, creating a bottleneck in the system. This has put a premium on research into optical switching, amplification and signal regeneration.

Memory is a tough nut to crack, however: it demands that a photon’s state be captured, retained and read out – all without converting the signal back to electrons, and in a repeatable and cheap fashion.

The NTT researchers say they have created an ultra-low-power optical RAM using optical cavities that represent a 1 or 0 by either passing or blocking light. The memory cell uses a material based on an indium gallium arsenide strip buried in gallium arsenide.

It acts as a memory because the indium-gallium arsenide strip changes its refractive index when exposed to a laser. The light beam it’s trying to “remember” will be blocked or passed depending on the state of the strip. A second pulse of laser on the “control” strip reverses its state.

While it only retains state for about a microsecond, the researchers say that’s long enough for other system components to use the stored information (and four times the previous record for an all-optical memory). Importantly, they also say the optical cavity approach consumes very low power – according to the Nature Photonics abstract, 30 nW, which is “more than 300 times lower than the previous record”. ®

Bootnote: Proposals for optical memory have existed for a surprisingly long time. For example, this Wikipedia entry describes an approach using a loop of photo-emissive and photo-sensitive materials from the 1950s, as an attempt to solve the problems of memory speed in early computers. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Canberra drone team dances a samba in Outback Challenge
CSIRO's 'missing bushwalker' found and watered
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.