Feeds

Melting Arctic leads to snowy winters

That missing iceberg is 12" deep on your driveway

5 things you didn’t know about cloud backup

Georgia Tech has lobbed a small grenade into the climate change debate, with a study suggesting a correlation between melting Arctic pack ice and snowy winters in the Northern Hemisphere.

The study, announced February 27, notes that above-average snow cover in the Northern Hemisphere has been measured each year since 2007 (when Arctic sea ice reached a record low level). During the 2009-2010 and 2010-2011 Northern Hemisphere winters, snow cover reached its second and third highest levels on record.

“Our study demonstrates that the decrease in Arctic sea ice area is linked to changes in the winter Northern Hemisphere atmospheric circulation,” said Judith Curry, chair of the School of Earth and Atmospheric Sciences at Georgia Tech. “The circulation changes result in more frequent episodes of atmospheric blocking patterns, which lead to increased cold surges and snow over large parts of the northern continents.”

The NASA- and NAS-supported research seeks to identify the mechanisms by which declining Arctic sea ice might influence winter weather conditions.

Georgia Tech researcher Jiping Liu said the research suggests that higher-than-usual sea ice melts in late Northern Hemisphere summers appears to be altering atmospheric currents – “weakening westerly winds, increasing the amplitude of the jet stream” – while at the same time lifting atmospheric moisture content.

Simulations run by the researchers also suggest that as the sea ice retreats, it results in surface warming in Greenland, north-eastern Canada, and the Arctic Ocean. This is matched by a corresponding surface cooling over Northern America, Europe, Siberia and eastern Asia, leading to above- average snowfall in those regions.

More simply: the moisture lost to the Arctic in the form of melting sea ice has to end up somewhere – and it appears to be falling as snow during the northern winter.

The Georgia Tech announcement says: “The consistent relationships seen in the model simulations and observational data illustrate that the rapid loss of sea ice in summer and delayed recovery of sea ice in autumn modulates snow cover, winter temperature and the frequency of cold air outbreaks in northern mid-latitudes.”

The research has been published in the Proceedings of the National Academy of Sciences. ®

Boost IT visibility and business value

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
Cutting cancer rates: Data, models and a happy ending?
How surgery might be making cancer prognoses worse
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Brit balloon bod Bodnar overflies North Pole
B-64 amateur ultralight payload approaching second circumnavigation
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Scale data protection with your virtual environment
To scale at the rate of virtualization growth, data protection solutions need to adopt new capabilities and simplify current features.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?