Feeds

Tiniest ever 128Gbit NAND flash chip flaunted

A little bit of TLC from SanDisk, Toshiba

Choosing a cloud hosting partner with confidence

SanDisk and Toshiba have jointly developed the smallest 128Gbit NAND flash chip in the world by using a 3-bit multi-level cell design (TLC) and a 19nm process.

The thing, just 170.6mm2 in area, is SanDisk's fifth generation of TLC technology. It uses something called All Bit-Line (ABL) programming and lots of technology tweaks described in a SanDisk White paper (PDF) to get a write speed of 18MB/sec and a speed of 400Mbit/s through a toggle mode interface.

SanDisks fifth generation 128Gbit TLC die

SanDisk's fifth generation 128Gbit TLC chip die

For example, the white paper says

In our first generation X3, we reported 8MB/sec write performance. Scaling to 19nm degrades the performance significantly. Process and cell structure changes, such as Air Gap recovers some of the degradation but that is not enough. In this design we have a) adopted a 16KB page size to double the performance capability, b) temperature compensation scheme for 10 per cent performance boost, and an enhanced 3-step programming to reduce FG-FG coupling by 95 per cent. A combination of these design features and process/cell structure changes allowed us to reach 18MB/sec on this advanced 19nm technology node.

The chip is in production already, with SanDisk saying products using it began shipping late in 2011 – although it doesn't say which products. A 64Gbit version of the chip compatible with the MicroSD format has been developed and a production ramp has started.

The company says that its 128Gbit TLC chip has enough performance to be able to replace 2-bit MLC ships in certain applications and hints pretty clearly at smartphones, tablets and SSDs.

How cost-effective this is going to be is open to question. On the face of it a 128GB SSD built with 128Gbit TLC chips should be significantly cheaper than one built with 2-bit chips, as you don't need so many chips.

But TLC has much less endurance – write cycles – than MLC; five times less or even worse. SanDisk doesn't say what the endurance is, which is a bad sign. We could readily imagine that there has to be so much over-provisioning of flash in a 3-bit product, compared to a 2-bit product, that the cost advantages are significantly eroded.

Until SanDisk and Toshiba announce actual products using their TLC chips we can't know what the endurance statistics are going to be, and what the cost penalties are going to be to turn a low endurance number into an acceptable one through over-provisioning and, perhaps, better controller technology to get usable data out of TLC cells nearing the end of their life.

Anobit, the controller company acquired by Apple, says its signal processing-based technology can make TLC flash as long-lived and as reliable as MLC flash. If controller tech and over-provisioning can actually deliver acceptable and affordable endurance for TLC NAND-based SSDs and other enterprise flash drive formats, such as PCIe cards, then we're set to see a good bump up in flash product capacity over the next six to eighteen months as products hit the market.

SanDisk and Toshiba talked about their fantastically small NAND chippery at the International Solid State Circuits Conference (ISSCC) in San Francisco on 22 February. This follows on from OCZ demonstrating a TLC drive at CES 2012. Intel and Micron also have TLC technology and will probably introduce 20nm TLC chips later this year. Ditto Samsung. The flash market and its customers are going to get a lot of TLC in the next few months. ®

Security for virtualized datacentres

More from The Register

next story
It's Big, it's Blue... it's simply FABLESS! IBM's chip-free future
Or why the reversal of globalisation ain't gonna 'appen
'Hmm, why CAN'T I run a water pipe through that rack of media servers?'
Leaving Las Vegas for Armenia kludging and Dubai dune bashing
Bitcasa bins $10-a-month Infinite storage offer
Firm cites 'low demand' plus 'abusers'
Facebook slurps 'paste sites' for STOLEN passwords, sprinkles on hash and salt
Zuck's ad empire DOESN'T see details in plain text. Phew!
Pssst. Want to buy a timeshare in the clouds?
The Google dilemma — controller or spreader of knowledge?
CAGE MATCH: Microsoft, Dell open co-located bit barns in Oz
Whole new species of XaaS spawning in the antipodes
Microsoft and Dell’s cloud in a box: Instant Azure for the data centre
A less painful way to run Microsoft’s private cloud
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
New hybrid storage solutions
Tackling data challenges through emerging hybrid storage solutions that enable optimum database performance whilst managing costs and increasingly large data stores.