Feeds

Big data elephant mates with RainStor

RainStor Hadoops its storage

The essential guide to IT transformation

RainStor, the deduping database supplier, is bringing its analytics engine and enterprise database to Hadoop, rather than bringing Hadoop data to its engine.

Hadoop is becoming a standard for storing big data but most business intelligence analytics software – such as that pushed out by GreenPlum, Netezza and Teradata – does not natively support the Hadoop file system, HDFS, so data has to be extracted and moved to the analytics engine. This takes time and needs disk space for the copied data.

John Bantleman, RainStor's CEO, briefed us on Hadoop support by RainStor, RainStor Big Data Analytics on Hadoop, and said existing business intelligence (BI) analytics routines run against extracted Hadoop data can take hours – whereas RainStor's Hadoop-supporting analytics engine can run analytics much, much faster, 10 to 100 times faster it's claimed. Before we get to that, let's just acquaint ourselves with RainStor's history.

The story starts with a UK company called Clearpace back in 2008. It's NParchive product archived less-frequently accessed data from an Oracle database or other RDBMS uniquely in deduplicated form, with a 20:1 or better dedupe ratio, on cheap SATA drives. SQL routines could be run against the NParchive and there was no need for data rehydration to do this.

Bantleman moved Clearpace across to Silicon Valley and renamed it and the product RainStor, although there was no RAIN – redundant array of internet nodes – aspect to the name though. The second phase of its development saw a move into telecommunications and using its database to cope with storing records of the tens of billions of network events a day.

A four-hour Hadoop MapReduce run to find a single stock's NYSE average price for a day, ran 1,800 times faster using a SQL query against Hadoop data stored natively in RainStor.

One RainStor customer is Softbank in Japan. It stores 2PB of raw data, compressed and deduped to 135TB held on HP scale-out NAS drive array storage. It gets answers to questions about what individual subscribers did in a day in two to five seconds. A traditional database/data warehouse scheme would involve many petabytes of data at an average cost of $20,000/TB, meaning a 3PB setup would cost upwards of $60m. The RainStor/HP hardware system cost around $5m.

Big data elephant

This is big data under any definition and big data means Hadoop and RainStor's third development phase. It has spent over a year integrating Hadoop support into its product, enabling RainStor to run natively on Hadoop, and execute both MapReduce queries and SQL queries against compressed and deduped Hadoop data. The company claims it can dedupe and compress such data with an up to 40:1 ratio; 97.5 per cent compression. Telco records are, for example, highly repetitive in their content and rewardingly susceptible to compression and deduplication.

RainStor says: "The compressed multi-structured data set running on HDFS delivers maximum efficiency and reduces the cluster size by 50 per cent to 80 per cent, which significantly lowers operating cost."

What about EMC Isilon's Hadoop integration and integration with Greenplum?

Bantleman says: "Greenplum doesn't allow you to run MapReduce; it's actually a Postgres database inside and about parallel relational SQL queries.. We are the only enterprise database that can run on HDFS ... [and] we've added the ability to support MapReduce.

"Greenplum, Teradata, Netezza and Vertica have built connectors to allow you to bring data out of Hadoop into their own databases. They can't run natively on Hadoop clusters; we can. .. RainStor allows you to run ad hoc analytics directly on the Hadoop environment."

Bantleman added that he thinks data transfers at big data scale are silly.

Boost IT visibility and business value

More from The Register

next story
Pay to play: The hidden cost of software defined everything
Enter credit card details if you want that system you bought to actually be useful
Shoot-em-up: Sony Online Entertainment hit by 'large scale DDoS attack'
Games disrupted as firm struggles to control network
HP busts out new ProLiant Gen9 servers
Think those are cool? Wait till you get a load of our racks
Silicon Valley jolted by magnitude 6.1 quake – its biggest in 25 years
Did the earth move for you at VMworld – oh, OK. It just did. A lot
VMware's high-wire balancing act: EVO might drag us ALL down
Get it right, EMC, or there'll be STORAGE CIVIL WAR. Mark my words
Forrester says it's time to give up on physical storage arrays
The physical/virtual storage tipping point may just have arrived
prev story

Whitepapers

Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up distributed data
Eliminating the redundant use of bandwidth and storage capacity and application consolidation in the modern data center.
The essential guide to IT transformation
ServiceNow discusses three IT transformations that can help CIOs automate IT services to transform IT and the enterprise
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.