Feeds

Boffins crack superconducting graphene's melting mystery

Next-gen high-speed transistors go 3D to slash leaks

Choosing a cloud hosting partner with confidence

Scientists in Manchester appear to have solved a problem with graphene that has plagued the super-material's fans since it was sliced into being in 2004.

The breakthrough takes the wunder-material one step closer to being the new silicon, and powering a new wave of computers.

Graphene lattice, credit AlexanderAlUS, via Wikimedia

Graphene's incredible properties - including superconductivity - made it almost too conductive to work with computers. Graphene transistors packed densely in a computer chip leaked too much current and instantly caused the chip to melt.

Russo-British scientists Professor Andre Geim and Professor Konstantin Novoselov – who jointly won the 2010 Nobel Physics Prize for their work in graphene – seem to have got around that problem.

Their innovation was aligning the graphene atoms vertically rather than laterally (in plane) - moving into the third dimension. They used graphene as an electrode from which electrons tunnelled through a dielectric into another metal (a tunnelling diode). Then they exploited a truly unique feature of graphene – that an external voltage can strongly change the energy of tunnelling electrons. As a result they got a new type of a device – a "vertical field-effect tunnelling transistor" in which graphene is a critical ingredient.

"It is a new vista for graphene research and chances for graphene-based electronics never looked better than they are now," said Professor Novoselov. To make the transistors, the team came up with the idea of using a layer cake of atoms: layering graphene between atomic planes of boron nitride and molybdenum disulphide.

Dr Leonid Ponomarenko, who spearheaded the experimental effort, said: "We have proved a conceptually new approach to graphene electronics. Our transistors already work pretty well. I believe they can be improved much further, scaled down to nanometre sizes and work at sub-THz frequencies."

Earlier this week the British government announced a £50m grant aimed at keeping the UK as the leading research centre on graphene. Most of the funding will be focused in Manchester. ®

The research paper Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures was published this week in Science.

Secure remote control for conventional and virtual desktops

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
NASA rover Curiosity drills HOLE in MARS 'GOLF COURSE'
Joins 'traffic light' and perfect stony sphere on the Red Planet
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.