Feeds

‘Quantum Trojans’ undermine security theory

Can dodgy vendors compromise ‘uncrackable’ security?

Top 5 reasons to deploy VMware with Tegile

A group of English and Canadian researchers has cast doubt on the nascent push to develop device-independent quantum cryptography standards, asserting that such schemes could be undermined by malicious vendors.

Their paper, Prisoners of their own device: Trojan attacks on device-independent quantum cryptography, is published on Arxiv.org, here.

The paper outlines scenarios which the authors say would be undetectable to the user, but would allow the attacker to obtain sufficient information to snoop on supposedly “uncrackable” quantum cryptography.

The paper, authored by London University mathematician Jonathan Barrett, Roger Colbeck of Canada’s Perimeter Institute of Theoretical Physics, and Adrian Kent of Cambridge’s Centre for Quantum Information and Foundations, states:

“A malicious manufacturer who wishes to mislead users or obtain data from them can equip devices with a memory [El Reg – to clarify, in our reading this refers to a memory included in the devices specifically for attack purposes] and use it in programming them.

“A task is potentially vulnerable to our attacks if it involves secret data generated by devices, and if Eve [El Reg – ie, the attacker] can learn some function of the device outputs.”

Their analysis gives rise, for example, to a scenario in which the attacking equipment might store key exchange communications from “day 1”, use this to analyse the key exchange taking place on “day 2”; and use this to extract the “day 1” key.

This is supposed to be impossible, since any tampering with the quantum communication channel should be revealed – for example, as (entanglement-destroying) noise on the quantum channel.

However, as the authors point out, all real-world channels contain noise; to overcome this, quantum crypto schemes exchange multiple pairs over a noisy channel, and use a statistical analysis to detect interference in the channel.

The malicious manufacturer, however, should be able to conceal its activities below the noise threshold the system uses to decide that the channel remains secure. The attacker could even build systems whose actual noise levels are lower than claimed, and use the gap between specified and real noise to conceal their activity.

If not addressed, the authors say the flaws they have identified effectively turn QKD devices into a “use once” proposition: you can only guarantee security for the first exchange, so the device has to be disposed of. ®

Comment: Before the world proclaims “quantum crypto not secure!” in headlines (too late? Oh well…) El Reg would make a couple of observations.

First, the malicious manufacturer is not a quantum-specific threat: backdoors can be just as easily inserted into classical cryptography kit.

Second, this paper is presenting a discussion not on any mass-deployed system, but on proposed schemes for device-independent QKD. Device independence has come to the fore chiefly because of prior demonstrations suggesting that today’s implementations have exploitable flaws; as a result, there has been ongoing discussion as to how users might verify the security of a quantum communication without knowing anything about the equipment used to create that channel.

For those interested in the kinds of schemes they believe could be compromised, the article cites some key papers on Arxiv, such as:

Security and composability of randomness expansion from Bell inequalities.

Certifiable quantum dice or, testable exponential randomness expansion.

Device-independent randomness expansion secure against quantum adversaries.

Third, the authors do not claim to have actually built a working proof-of-concept: their paper is a discussion of how a malicious system may be designed; it’s been published on Arxiv for review, and El Reg would expect a veritable feast of future papers for quantum crypto enthusiasts. ®

Beginner's guide to SSL certificates

More from The Register

next story
LIFE, JIM? Comet probot lander found 'ORGANICS' on far-off iceball
That's it for God, then – if Comet 67P has got complex molecules
Rosetta probot drilling DENIED: Philae has its 'LEG in the AIR'
NOT best position for scientific fulfillment
'Yes, yes... YES!' Philae lands on COMET 67P
Plucky probot aces landing on high-speed space rock - emotional scenes in Darmstadt
HUMAN DNA 'will be FOUND ON MOON' – rocking boffin Brian Cox
Crowdfund plan to stimulate Blighty's space programme
THERE it is! Philae comet lander FOUND in EXISTING Rosetta PICS
Crumb? Pixel? ALIEN? Better, it's a comet-catcher!
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
Post-pub nosh neckfiller: The MIGHTY Scotch egg
Off to the boozer? This delicacy might help mitigate the effects
I'M SO SORRY, sobs Rosetta Brit boffin in 'sexist' sexy shirt storm
'He is just being himself' says proud mum of larger-than-life physicist
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Choosing a cloud hosting partner with confidence
Download Choosing a Cloud Hosting Provider with Confidence to learn more about cloud computing - the new opportunities and new security challenges.
New hybrid storage solutions
Tackling data challenges through emerging hybrid storage solutions that enable optimum database performance whilst managing costs and increasingly large data stores.