Feeds

Untangling the question of antimatter mass

Boffins spin up positronium

Remote control for virtualized desktops

A group of researchers at University of California Riverside hopes to chip away at one of physics’ ‘question of questions’ – why the blazes we’re here at all. Their hope is to make electron/positron pairs live long enough to measure the positron’s mass and find out if it’s different to the electron.

It’s a puzzle that resists solution: somehow, just after the Big Bang, the Universe we inhabit ended up with a theoretically-unexpected characteristic: a little more matter than antimatter. This violation of symmetry (baryogenesis – at least, I think that’s how it’s spelled and what it means) gives rise to the fundamental particles of ordinary matter.

If matter and antimatter can be demonstrated to have somehow different properties, it would be a step in the right direction: it would at least give us a pointer as to what might give rise to the matter/antimatter difference.

The Riverside researchers are taking the first tentative steps to look at one such possibility – that matter and antimatter have different mass.

To provide a useful test of the mass of an antimatter particle, you need one that exists for long enough to respond to measurement – always difficult, since matter and antimatter annihilate on contact.

The aim of the Riverside project is to create positronium (an electron and its antimatter counterpart, a positron, in a bound state) to survive for as much as ten milliseconds – ten thousand times longer than it usually exists, according to Allen Mills, an assistant project scientist working under David Cassidy in the university’s Department of Physics and Astronomy.

Their approach, described here in R&D, is to have the positronium electron/positron pair exist in an atom in a Rydberg state. In this highly excited state, the “outermost” electrons orbit at maximum distance from the nucleus (observing that we’re using “orbit” as a simple model of the atom, commenters please don’t bother reminding me that the model isn’t complete).

The distance separating the bound electron and positron gives them a longer-than-usual survival time.

"Using lasers we excited positronium to what is called a Rydberg state, which renders the atom very weakly bound, with the electron and positron being far away from each other," said Cassidy. "This stops them from destroying each other for a while, which means you can do experiments with them."

So far, though, the team has only achieved a 10-to-100 times longer lifetime for the positronium.

"But that's not enough for what we're trying to do," Cassidy said. "In the near future we will use a technique that imparts a high angular momentum to Rydberg atoms. This makes it more difficult for the atoms to decay, and they might live for up to 10 milliseconds — an increase by a factor of 10,000 — and offer themselves up for closer study."

With longer-lifetime atoms to work with, Cassidy says, the laboratory will be able to create beams of the excited atoms – and the deflection of those beams due to gravity might tell them whether positronium’s mass is different to that of normal matter.

While other experiments have created long-lived antimatter (CERN has created anti-hydrogen with a thousand-second lifetime), what's notable about the Riverside experiment is that it seeks to create a long-lived antimatter that can be put in a beam.

A difference – which, by the way, Cassidy says he doesn’t expect to see – would go some way, at least, to explaining the asymmetry that gives the universe more matter than antimatter. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
Renewable energy 'simply WON'T WORK': Top Google engineers
Windmills, solar, tidal - all a 'false hope', say Stanford PhDs
SEX BEAST SEALS may be egging each other on to ATTACK PENGUINS
Boffin: 'I think the behaviour is increasing in frequency'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
The next big thing in medical science: POO TRANSPLANTS
Your brother's gonna die, kid, unless we can give him your, well ...
NASA launches new climate model at SC14
75 days of supercomputing later ...
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
5 critical considerations for enterprise cloud backup
Key considerations when evaluating cloud backup solutions to ensure adequate protection security and availability of enterprise data.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Beginner's guide to SSL certificates
De-mystify the technology involved and give you the information you need to make the best decision when considering your online security options.