Feeds

IBM demos new nanotech

Carbon nanotube, graphene research boost transistors' future

Secure remote control for conventional and virtual desktops

Somehow, we still manage to inch-out the limits of Moore’s Law: in a double-whammy to end the week, IBM has demonstrated the smallest carbon nanotube transistor, and has claimed the world’s fastest graphene transistor.

The graphene transistor is something of a coup: its 100 GHz capability is the fastest frequency cutoff yet achieved by a graphene transistor. Big Blue’s announcement, summarizing a paper published in Science says its new device was created using techniques “compatible to those used in advanced silicon device fabrication”.

By being able to grow the transistor at a wafer scale (rather than producing a much smaller number of devices at a research scale), IBM has also demonstrated that the gap is closing between graphene in the lab and in a chip foundry.

“The breakthrough we are announcing demonstrates clearly that graphene can be utilized to product high performance devices and integrated circuits” said Dr T.C. Chen, VP for science and technology at IBM Research.

The 100 GHz chip is quite large by current standards – the gate is 240 nm long – but this, IBM says, leaves “plenty of space” for gate length to be scaled down. Even with this relatively long gate, the transistor outperforms a similar-scale silicon device, which it says would be restricted to around 40 GHz.

In its other announcement, made in Nano Letters, IBM is claiming the record for the smallest-ever carbon nanotube transistor. Their 9 nanometer device, the researchers say, is the first demonstration that carbon nanotubes can be fabricated at geometries better than 10 nm.

IBM's carbon nanotube transistor

IBM's artists' impression of the carbon

nanotube transistor

Aaron Franklin, a researcher at IBM’s Watson research centre, told Technology Review it’s important to prove that nanotubes can be fabricated with such small feature sizes: quite simply, there’s not much point researching materials that can’t beat silicon’s geometry.

The company claims that the 9 nanometer nanotube transistor has lower power consumption than other devices at similar scale, while being able to handle higher current throughput, improving its potential signal-to-noise ratio. ®

Boost IT visibility and business value

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
Cutting cancer rates: Data, models and a happy ending?
How surgery might be making cancer prognoses worse
Boffins ID freakish spine-smothered prehistoric critter: The CLAW gave it away
Bizarre-looking creature actually related to velvet worms
CRR-CRRRK, beep, beep: Mars space truck backs out of slippery sand trap
Curiosity finds new drilling target after course correction
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Brit balloon bod Bodnar overflies North Pole
B-64 amateur ultralight payload approaching second circumnavigation
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
Astronomers scramble for obs on new comet
Amateur gets fifth confirmed discovery
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?