Feeds

IBM demos new nanotech

Carbon nanotube, graphene research boost transistors' future

Intelligent flash storage arrays

Somehow, we still manage to inch-out the limits of Moore’s Law: in a double-whammy to end the week, IBM has demonstrated the smallest carbon nanotube transistor, and has claimed the world’s fastest graphene transistor.

The graphene transistor is something of a coup: its 100 GHz capability is the fastest frequency cutoff yet achieved by a graphene transistor. Big Blue’s announcement, summarizing a paper published in Science says its new device was created using techniques “compatible to those used in advanced silicon device fabrication”.

By being able to grow the transistor at a wafer scale (rather than producing a much smaller number of devices at a research scale), IBM has also demonstrated that the gap is closing between graphene in the lab and in a chip foundry.

“The breakthrough we are announcing demonstrates clearly that graphene can be utilized to product high performance devices and integrated circuits” said Dr T.C. Chen, VP for science and technology at IBM Research.

The 100 GHz chip is quite large by current standards – the gate is 240 nm long – but this, IBM says, leaves “plenty of space” for gate length to be scaled down. Even with this relatively long gate, the transistor outperforms a similar-scale silicon device, which it says would be restricted to around 40 GHz.

In its other announcement, made in Nano Letters, IBM is claiming the record for the smallest-ever carbon nanotube transistor. Their 9 nanometer device, the researchers say, is the first demonstration that carbon nanotubes can be fabricated at geometries better than 10 nm.

IBM's carbon nanotube transistor

IBM's artists' impression of the carbon

nanotube transistor

Aaron Franklin, a researcher at IBM’s Watson research centre, told Technology Review it’s important to prove that nanotubes can be fabricated with such small feature sizes: quite simply, there’s not much point researching materials that can’t beat silicon’s geometry.

The company claims that the 9 nanometer nanotube transistor has lower power consumption than other devices at similar scale, while being able to handle higher current throughput, improving its potential signal-to-noise ratio. ®

Security for virtualized datacentres

More from The Register

next story
Boffins who stare at goats: I do believe they’re SHRINKING
Alpine chamois being squashed by global warming
Comet Siding Spring revealed as flying molehill
Hiding from this space pimple isn't going to do humanity's reputation any good
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
LONG ARM of the SAUR: Brachially gifted dino bone conundrum solved
Deinocheirus mirificus was a bit of a knuckle dragger
MARS NEEDS WOMEN, claims NASA pseudo 'naut: They eat less
'Some might find this idea offensive' boffin admits
No sail: NASA spikes Sunjammer
'Solar sail' demonstrator project binned
Carry On Cosmonaut: Willful Child is a poor taste Star Trek parody
Cringeworthy, crude and crass jokes abound in Steven Erikson’s sci-fi debut
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.