Feeds

Laser used to cool semiconductor

Next: the quantum physics case-mod

Next gen security for virtualised datacentres

Lasers heat things up, right? – unless you happen to hit upon the right resonance, in which case it seems you can use lasers to cool things down.

laser_cooled_semiconductor

Koji Usami carries out the experiments
at the Quantop laboratories at the Niels
Bohr Institute. Credit: Niels Bohr Institute

In an announcement that could be filed under either “counter-intuitive” or simply “wow”, scientists at Copenhagen University’s Niels Bohr institute have used a laser to cool a semiconductor membrane to -269°C.

The research, published in Nature Physics, extends a known quantum phenomenon to the macroscopic world. Focussed lasers have been used since the 1980s to cool atoms. In the current research, the group from the Niels Bohr Institute’s Quantop group wanted to try a similar trick in the macro world.

“It would mean entirely new possibilities for what is called optomechanics, the interaction between optical radiation … and a mechanical motion,” said Quantop’s head professor Eugene Polzik.

Here’s how it the cooling phenomenon happens for single atoms: if the atom is moving towards the laser, the photon striking the atom will slow it down; enough impacts will reduce its momentum to near-zero (at which point it would have a temperature of absolute zero).

There’s a problem, though: it only works for atoms traveling towards the laser. If the atom is traveling in the same direction as the laser, it will gain momentum instead (and heat up). Various techniques have been developed over the years to counter this; for the purposes of this discussion, I will stick with the simplest.

If the laser is tuned to just below the resonant frequency of the atom, the “head-on” photon is Doppler-shifted towards the resonant frequency. As a result, photons in that direction are absorbed just a little more strongly than photons headed in the same direction as the atom.

Making all this work for a complex material rather than a single atom is much harder – and that’s the breakthrough being claimed by the Niels Bohr researchers. Their choice of material is gallium arsenide, and since 2009, they have been working to create a semiconducting membrane with the right dimensions to use in their experiments.

The resulting membrane has an area of more than 1 square millimeter, but is only 160 nanometers thick. This, it seems, has the right resonant properties to be subjected to laser cooling, but at a macro rather than single-atom level.

Associate professor Koji Usami explains the experiement: “we let the membrane interact with the laser light in such a way that its mechanical movements affected the light that hit it.

“We carefully examined the physics and discovered that a certain oscillation mode of the membrane cooled from room temperature down to minus 269 degrees C, which was a result of the complex and fascinating interplay between the movement of the membrane, the properties of the semiconductor and the optical resonances”.

Usami says the technique might be useful for cooling components in quantum computers, and could also be used to create new electrical or mechanical sensors. If the technique can be applied more widely, it could also replace cryogenic cooling in a variety of applications. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
Volcanic eruption in Iceland triggers CODE RED aviation warning
Lava-spitting Bárðarbunga prompts action from Met Office
NASA to reformat Opportunity rover's memory from 125 million miles away
Interplanetary admins will back up data and get to work
Major cyber attack hits Norwegian oil industry
Statoil, the gas giant behind the Scandie social miracle, targeted
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.