Feeds

Quantum physics to encrypt clouds of the future - boffins

No chance of sniffing your privates on qubit-crunching computers

Combat fraud and increase customer satisfaction

Boffins looking for the perfect alliance between science and technology have married quantum computing to the future of IT - the cloud.

The researchers have used quantum mechanics to encrypt heavy-duty number-crunching computing, thereby removing a major obstacle in the adoption of the cloud for many enterprises - how safe is my data when it's hosted on someone else's computers?

Their experiment envisions the data processing servers as a quantum computer, and the eggheads have succeeded in hiding the input, data processing and output of a computation from any possible snooping.

"Quantum physics solves one of the key challenges in distributed computing. It can preserve data privacy when users interact with remote computing centers," Stefanie Barz, lead author of the study, said in a canned statement.

Quantum computers use the ability of quantum particles to be in more than one state at the same time to rapidly check lots and lots of possible solutions to a problem, thus ramping up their processing power. There aren't actually any quantum computers in significant production yet, and if and when they do get built, they're likely to be as expensive and rare as supercomputers are now.

If you run the company that's built that shiny quantum computer, you're going to want to rent it out to as many people as possible to make your money back. But the folks that want to use your stellar machine aren't going to want to give you access to their code or information.

Enter cloud computing, which would let clients send their stuff direct to the quantum computer, but they're still going to want to make sure you can't sneak a peek at the machine's calculations.

That's where this system, dubbed "blind quantum computing", comes in. It uses photons, which can be transmitted over long distances and can have quantum computation operations performed on them, to encode the data.

What's happening is that the user is preparing qubits - the fundamental units of quantum computers - and entangling them in a way only he understands. He then whizzes these qubits over to the quantum computer, along with instructions for the computation, and the processing is done by simple measurements on the qubits. Then the results are sent back to the user, who can interpret them.

If you try to take a look at the computations on your quantum computer, you would likely destroy them, since entanglement is a fragile state. Even if you did manage to see it, the values would just look like a meaningless jumble to you.

So the kind of outfits that could afford to hire out some time on a quantum computer - governments, massively paranoid mega-corporations, the military, etc - can be promised hyper-secure processing.

The results were published in this week's Science journal and discussed in a commentary in the same mag here. You can thank the clever clogs at the University of Vienna, the Austrian Academy of Sciences, the University of Edinburgh, the University of Waterloo, the National University of Singapore and University College Dublin for coming up with the quantum encryption-in-the-cloud masterstroke. ®

3 Big data security analytics techniques

More from The Register

next story
This time it's 'Personal': new Office 365 sub covers just two devices
Redmond also brings Office into Google's back yard
Kingston DataTraveler MicroDuo: Turn your phone into a 72GB beast
USB-usiness in the front, micro-USB party in the back
AMD's 'Seattle' 64-bit ARM server chips now sampling, set to launch in late 2014
But they won't appear in SeaMicro Fabric Compute Systems anytime soon
Microsoft's Nadella: SQL Server 2014 means we're all about data
Adds new big data tools in quest for 'ambient intelligence'
BOFH: Oh DO tell us what you think. *CLICK*
$%%&amp Oh dear, we've been cut *CLICK* Well hello *CLICK* You're breaking up...
Inside the Hekaton: SQL Server 2014's database engine deconstructed
Nadella's database sqares the circle of cheap memory vs speed
prev story

Whitepapers

Mobile application security study
Download this report to see the alarming realities regarding the sheer number of applications vulnerable to attack, as well as the most common and easily addressable vulnerability errors.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.
Combat fraud and increase customer satisfaction
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.