Feeds

UNSW researcher creates four-atom silicon wires

Quantum-scale lifeline for Moore's Law and Ohm's Law

Boost IT visibility and business value

Researchers at the University of New South Wales have created what the uni thinks is the narrowest-ever silicon conducting wire.

At just four atoms wide and one atom tall, the wire has demonstrated a surprising property: Ohm’s law (current equals voltage divided by resistance) holds true even at such a tiny scale, the resistivity of the wire unaffected by its width.

"It is extraordinary to show that such a basic law still holds even when constructing a wire from the fundamental building blocks of nature – atoms," says lead author of the study, Bent Weber, a student at the university’s ARC Centre of Excellence for Quantum Computing.

This result gets around what’s been seen as an approaching limit to shrinking the feature size of microelectronics: previous researchers have found that as wires shrink below 10 nanometers, quantum effects take over from Ohm’s law, and resistivity rises exponentially.

According to http://www.nature.com/news/nanoscale-wires-defy-quantum-predictions-1.9747 Nature, the tiny conductors were fabricated by covering a silicon crystal with hydrogen atoms, using the tip of a scanning electron microscope to carve out a channel in the hydrogen, and “doped” the exposed silicon with phosphorus atoms to create a conductive wire, which is finally coated with another layer of silicon.

A co-author of the paper, ARC director Michelle Simmons, explained to Nature that there are two reasons these wires obey Ohm’s law: the high density of phosphorus in the wires creates a strong overlap of electron waveforms; and since the doped silicon wires are completely encapsulated in silicon, there are no external surfaces to inhibit the mobility and availability of electrons.

She notes that the technique Weber’s research used would not be suitable for mass-produced chips. However, by demonstrating that quantum-scale wires can be made to demonstrate classical behaviours, the research holds out the prospect Moore’s Law can be kept intact for many years to come.

Scientists at the University of Melbourne and Purdue University in America also took part in the research. ®


University of NSW animation of the tiny wire.

Boost IT visibility and business value

More from The Register

next story
Just TWO climate committee MPs contradict IPCC: The two with SCIENCE degrees
'Greenhouse effect is real, but as for the rest of it ...'
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
Asteroid's DINO KILLING SPREE just bad luck – boffins
Sauricide WASN'T inevitable, reckon scientists
Flamewars in SPAAACE: cooler fires hint at energy efficiency
Experiment aboard ISS shows we should all chill out for cleaner engines
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Famous 'Dish' radio telescope to be emptied in budget crisis: CSIRO
Radio astronomy suffering to protect Square Kilometre Array
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
The Essential Guide to IT Transformation
ServiceNow discusses three IT transformations that can help CIO's automate IT services to transform IT and the enterprise.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.