Feeds

UNSW researcher creates four-atom silicon wires

Quantum-scale lifeline for Moore's Law and Ohm's Law

Secure remote control for conventional and virtual desktops

Researchers at the University of New South Wales have created what the uni thinks is the narrowest-ever silicon conducting wire.

At just four atoms wide and one atom tall, the wire has demonstrated a surprising property: Ohm’s law (current equals voltage divided by resistance) holds true even at such a tiny scale, the resistivity of the wire unaffected by its width.

"It is extraordinary to show that such a basic law still holds even when constructing a wire from the fundamental building blocks of nature – atoms," says lead author of the study, Bent Weber, a student at the university’s ARC Centre of Excellence for Quantum Computing.

This result gets around what’s been seen as an approaching limit to shrinking the feature size of microelectronics: previous researchers have found that as wires shrink below 10 nanometers, quantum effects take over from Ohm’s law, and resistivity rises exponentially.

According to http://www.nature.com/news/nanoscale-wires-defy-quantum-predictions-1.9747 Nature, the tiny conductors were fabricated by covering a silicon crystal with hydrogen atoms, using the tip of a scanning electron microscope to carve out a channel in the hydrogen, and “doped” the exposed silicon with phosphorus atoms to create a conductive wire, which is finally coated with another layer of silicon.

A co-author of the paper, ARC director Michelle Simmons, explained to Nature that there are two reasons these wires obey Ohm’s law: the high density of phosphorus in the wires creates a strong overlap of electron waveforms; and since the doped silicon wires are completely encapsulated in silicon, there are no external surfaces to inhibit the mobility and availability of electrons.

She notes that the technique Weber’s research used would not be suitable for mass-produced chips. However, by demonstrating that quantum-scale wires can be made to demonstrate classical behaviours, the research holds out the prospect Moore’s Law can be kept intact for many years to come.

Scientists at the University of Melbourne and Purdue University in America also took part in the research. ®


University of NSW animation of the tiny wire.

Next gen security for virtualised datacentres

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
NASA to reformat Opportunity rover's memory from 125 million miles away
Interplanetary admins will back up data and get to work
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
prev story

Whitepapers

5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up Big Data
Solving backup challenges and “protect everything from everywhere,” as we move into the era of big data management and the adoption of BYOD.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?