Feeds

UNSW researcher creates four-atom silicon wires

Quantum-scale lifeline for Moore's Law and Ohm's Law

New hybrid storage solutions

Researchers at the University of New South Wales have created what the uni thinks is the narrowest-ever silicon conducting wire.

At just four atoms wide and one atom tall, the wire has demonstrated a surprising property: Ohm’s law (current equals voltage divided by resistance) holds true even at such a tiny scale, the resistivity of the wire unaffected by its width.

"It is extraordinary to show that such a basic law still holds even when constructing a wire from the fundamental building blocks of nature – atoms," says lead author of the study, Bent Weber, a student at the university’s ARC Centre of Excellence for Quantum Computing.

This result gets around what’s been seen as an approaching limit to shrinking the feature size of microelectronics: previous researchers have found that as wires shrink below 10 nanometers, quantum effects take over from Ohm’s law, and resistivity rises exponentially.

According to http://www.nature.com/news/nanoscale-wires-defy-quantum-predictions-1.9747 Nature, the tiny conductors were fabricated by covering a silicon crystal with hydrogen atoms, using the tip of a scanning electron microscope to carve out a channel in the hydrogen, and “doped” the exposed silicon with phosphorus atoms to create a conductive wire, which is finally coated with another layer of silicon.

A co-author of the paper, ARC director Michelle Simmons, explained to Nature that there are two reasons these wires obey Ohm’s law: the high density of phosphorus in the wires creates a strong overlap of electron waveforms; and since the doped silicon wires are completely encapsulated in silicon, there are no external surfaces to inhibit the mobility and availability of electrons.

She notes that the technique Weber’s research used would not be suitable for mass-produced chips. However, by demonstrating that quantum-scale wires can be made to demonstrate classical behaviours, the research holds out the prospect Moore’s Law can be kept intact for many years to come.

Scientists at the University of Melbourne and Purdue University in America also took part in the research. ®


University of NSW animation of the tiny wire.

Providing a secure and efficient Helpdesk

More from The Register

next story
Boffins: Behold the SILICON CHEAPNESS of our tiny, radio-signal-munching IoT sensor
Single ant-sized Stanford chip combines radio, 'puter, antenna
Thought that last dinosaur was BIG? This one's bloody ENORMOUS
Weighed several adult elephants, contend boffins
TROUT and EELS in SINISTER PACT to RULE the oceans
Slimy chums form deadly alliance to sweep seas
Drones swarm over bearded Brit billionaire's island getaway
Just to take lovely pictures though, after Richard Branson invests in 3D Robotics
Chelyabinsk-sized SURPRISE asteroid to skim Earth, satnav birds
Space rock appears out of nowhere, buzzes planet on Sunday
California blue whale numbers soar to historical levels, say boffins
Still far too many of them being struck by US ships, mind
City hidden beneath England's Stonehenge had HUMAN ABATTOIR. And a pub
Boozed-up ancients drank beer before tearing corpses apart
'Duck face' selfie in SPAAAACE: Rosetta's snap with bird comet
Probe prepares to make first landing on fast-moving rock
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
Intelligent flash storage arrays
Tegile Intelligent Storage Arrays with IntelliFlash helps IT boost storage utilization and effciency while delivering unmatched storage savings and performance.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.