Feeds

Apache lets fly Hadoop 1.0 data muncher

This ain't no Dumbo

Gartner critical capabilities for enterprise endpoint backup

The Hadoop project at the Apache Software Foundation is beating its chest for delivering the v1.0 version of the open source MapReduce data analysis tool, its Hadoop Distributed File System (HDFS), and other related code.

While software version and release numbers can sometimes be arbitrary, they are often also symbolic, and in this case the jump up to v1.0 is a little bit of both. But it's clearly intended to signify that the open source software is ready for primetime use among IT organizations that are not data analytics hotshots, but want to be.

This is akin to the position that the open source Linux operating system was in towards the tail end of the dot-com boom, with the Linux 2.2 kernel, which had the stability and scalability that enterprises required as they contemplated alternatives to more expensive Unix and proprietary operating systems.

In the dot-com bust, when Linux began its assault on the data center, the open source code was available for free for those who wanted to roll their own Linuxes - as well as there being commercial releases from Red Hat, SUSE, and others who would do the rolling for you and offer commercial support.

The same thing is happening again with the Hadoop project, with Apache providing a home for Hadoop and its related tools to allow them to be improved and integrated. Meanwhile companies such as Cloudera, HortonWorks, MapR, IBM, Oracle, and a number of other smaller players are offering complete Hadoop stacks, or support for parts of the stack. The release number on Apache Hadoop is therefore perhaps not as relevant as the stacks others are providing commercial support for, and what elements they pick and choose from among the various Hadoop trees.

Hadoop and its related HDFS were created by techies at Yahoo! to mimic the prior generation of search engine indexing technology – MapReduce and Google File System to be specific – which was used by Google back in the mid-2000s. Google has since moved on, much as Hadoop MapReduce is being augmented to include NoSQL data stores and expanded to other data crunching algorithms besides mapping and reducing. Hadoop has been an Apache project for the past six years, with heavy contributions from Yahoo! and the Hadoop commercializers.

Not all of the possible code modules that work with Hadoop have been included in the Hadoop v1.0 release, but the key functionality is in there to start doing real work. However, some useful functions for Hadoop are closed source and under control of the commercial distros.

The core Hadoop code in the v1.0 stack from Apache is based on Hadoop 0.20.205.0 from the 0.20-security code line, which came out in October. In addition to the core MapReduce algorithm and HDFS, Hadoop v1.0 includes improvements to HBase, the column-oriented add-on for HDFS that is modeled on Google's BigTable; WebHDFS, a REST API front-end for HBase; as well as performance enhancements and bug fixes for Hadoop, HDFS, and HBase. (You can read the release notes here and the v1.0 documentation there.)

This core Hadoop software is akin to a Linux kernel for big data, with other tools such as HBase, Hive (for ad hoc SQL-like queries), Pig (a high-level programming language for Hadoop), and ZooKeeper (a configuration server for clusters). These are also Apache projects, as is the related Mahout machine learning add-on and the Cassandra alternative data store for Hadoop.

A full-blown Hadoop distribution with multiple data stores and data munching algorithms, as El Reg outlined last November from Hadoop World, is getting complicated and crowded. Or diverse and more useful, if you want to be nice to the stuffed elephant that is Hadoop's namesake. ®

Secure remote control for conventional and virtual desktops

More from The Register

next story
The Return of BSOD: Does ANYONE trust Microsoft patches?
Sysadmins, you're either fighting fires or seen as incompetents now
Microsoft: Azure isn't ready for biz-critical apps … yet
Microsoft will move its own IT to the cloud to avoid $200m server bill
Oracle reveals 32-core, 10 BEEELLION-transistor SPARC M7
New chip scales to 1024 cores, 8192 threads 64 TB RAM, at speeds over 3.6GHz
US regulators OK sale of IBM's x86 server biz to Lenovo
Now all that remains is for gov't offices to ban the boxes
Flash could be CHEAPER than SAS DISK? Come off it, NetApp
Stats analysis reckons we'll hit that point in just three years
Object storage bods Exablox: RAID is dead, baby. RAID is dead
Bring your own disks to its object appliances
Nimble's latest mutants GORGE themselves on unlucky forerunners
Crossing Sandy Bridges without stopping for breath
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.