Feeds

Inventor flames Reg, HP in memristor brouhaha

Empties flammenwerfer tank over hapless hack, boffins

Protecting against web application threats using SSL

Here is some Christmas holiday reading. HP's claim that RRAM, PCM, and MRAM are all memristor technologies is bullshit, the memristor is not a fourth fundamental circuit element, HP didn't find it, and its developing memristor product is a not a memristor - really.

The flame from Blaise

So says ex-USPTO patent examiner and inventor Blaise Mouttet1 of Arlington, Virginia. He commented to me on a story about HP and Hynix producing the memristor goods by 2013, saying: "You are either an idiot or trying to get in good with HP for contributing to their bullshit claiming that RRAM, PCM, and MRAM are all memristor technologies. Aren't you capable of distinguishing between corporate propaganda and legitimate technological development? What a disgrace."

Upon asking why he thought that he replied:

The original 1971 definition of a memristor given by Chua was a 2-terminal non-linear passive circuit linking electric charge and magnetic flux linkage. None of the memory types you listed in your article have been shown to conform to this definition and it is irresponsible to claim them as memristors unless this is shown.

The drift of oxygen vacancies in titanium dioxide is non-linearly dependent on current rather than linearly dependent as required by the memristor model proposed in Strukov and Williams 2008 paper2.

The "memristor" is a propaganda campaign by HP to take credit for emerging memory devices invented by other companies. Chua's memristor theory does nothing to explain the actual physics in any of these devices. I gave a presentation at ISCAS 2010 which expands on some of these points ... as well as an online article attempting to explain why the memristor model is wrong and providing some background historical context. It is very disappointing to me that so many in the scientific press so easily buy into this memristor crap without attempting to look more closely into the motivations behind why HP is promoting it so much or whether their claims stand up to scrutiny.

To understand his points we have to delve into a little electronics and a little history.

First we have to note that a classic resistor in electronics is a linear circuit element whose resistance to electric current depends upon a proportional relationship between current and voltage as represented by Ohm's law; i=v/r.

Memsistor and memresistor history

Some special electronic devices have a resistance that depends upon the history of a previously applied current or voltage. Bernard Widrow of Stanford University devised the term 'memistor' in 1960 for this, while working with electro-chemical resistors in an attempt to build a artificial neuron-like circuit called ADALINE (ADAptive LInear NEuron). Various scientific papers discussed solid-state, thin-film memistors after that3.

'It appears that Chua has recently broadened the definition to save face for HP'

Mouttet says that Leon Chua, a a UC Berkeley professor of non-linear circuit theory, coined the term "memristor" in 1971 to describe what he considered to be a missing circuit and the “4th fundamental circuit element” after the resistor, capacitor, and inductor. This 4th circuit element claim is fallacious in Mouttet's view.

HP Lab's Stanley Williams, a senior HP fellow and founding Director of the HP Quantum Science Research (QSR) group, has a different view:

[Chua's original memristor definition did not] postulate any mechanism at all. Moreover, the memristor definition did not even require causality. In other words, the mathematical relationship between flux and charge could be the result of some other cause – any mechanism that led to the constraint embodied by the equation dφ = M dq would lead to a device with the properties of a memristor.

He published these initial findings4 essentially as a curiosity – it was not obvious at that time that such a circuit element existed. However, some people (as I did at first) have taken this paper too literally and thought that a memristor must involve a direct interaction of a charge with a magnetic flux – in fact, there was no such requirement or restriction in the memristor definition.

A documented brief history of memristor development by Williams can be downloaded here (pdf). It is a very good read.

Choosing a cloud hosting partner with confidence

More from The Register

next story
Wanna keep your data for 1,000 YEARS? No? Hard luck, HDS wants you to anyway
Combine Blu-ray and M-DISC and you get this monster
US boffins demo 'twisted radio' mux
OAM takes wireless signals to 32 Gbps
Google+ GOING, GOING ... ? Newbie Gmailers no longer forced into mandatory ID slurp
Mountain View distances itself from lame 'network thingy'
Apple flops out 2FA for iCloud in bid to stop future nude selfie leaks
Millions of 4chan users howl with laughter as Cupertino slams stable door
Students playing with impressive racks? Yes, it's cluster comp time
The most comprehensive coverage the world has ever seen. Ever
Run little spreadsheet, run! IBM's Watson is coming to gobble you up
Big Blue's big super's big appetite for big data in big clouds for big analytics
Seagate's triple-headed Cerberus could SAVE the DISK WORLD
... and possibly bring us even more HAMR time. Yay!
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.