Feeds

Petaflops beater: Nvidia chief talks exascale

Programming for parallel processes

7 Elements of Radically Simple OS Migration

"Power is now the limiter of every computing platform, from cellphones to PCs and even data centres," said NVIDIA chief executive Jen-Hsun Huang, speaking at the company's GPU Technology Conference in Beijing last week. There was much talk there about the path to exascale, a form of supercomputing that can execute 1018 flop/s (Floating Point Operations per Second).

Currently, the world's fastest supercomputer, Japan's K computer, achieves 10 petaflops (one petaflop = a thousand trillion floating point operations per second), just 1 per cent of exascale. The K computer consumes 12.66MW (megawatts), and Huang suggests that a realistic limit for a supercomputer is 20MW, which is why achieving exascale is a matter of power efficiency as well as size. At the other end of the scale, power efficiency determines whether your smartphone or tablet will last the day without a recharge, making this a key issue for everyone.

Huang's thesis is that the CPU, which is optimised for single-threaded execution, will not deliver the required efficiency. "With four cores, in order to execute an operation, a floating point add or a floating point multiply, 50 times more energy is dedicated to the scheduling of that operation than the operation itself," he says.

Jen-Hsun Huang, photo Tim Anderson

Power limits: NVIDIA chief executive Jen-Hsun Huang

"We believe the right approach is to use much more energy-efficient processors. Using much simpler processors and many of them, we can optimise for throughput. The unfortunate part is that this processor would no longer be good for single-threaded applications. By adding the two processors, the sequential code can run on the CPU, the parallel code can run on the GPU, and as a result you can get the benefit of the both. We call it heterogeneous computing."

He would say that. NVIDIA makes GPUs after all. But the message is being heard in the supercomputing world, where 39 of the top 500 use GPUs, up from 17 a year ago, and including the number 2 supercomputer: Tianhe-1A in China. Thirty-five of those 39 GPUs are from NVIDIA.

At a mere 2.57 petaflops though, Tianhe-1A is well behind the K computer, which does not use GPUs. Does that undermine Huang's thesis? "If you were to design the K computer with heterogeneous architecture, it would be even more," he insists. "At the time the K computer was conceived, almost 10 years ago, heterogeneous was not very popular."

Using GPUs for purposes other than driving a display is only practical because of changes made to the architecture to support general-purpose programming. NVIDIA's system is called CUDA and is programmed using CUDA C/C++. The latest CUDA compiler is based on LLVM, which makes it easier to add support for other languages. In addition, the company has just announced that it will release the compiler source code to researchers and tool vendors. "It's open source enough that anybody who would like to develop their target compiler can do it," says Huang.

Another strand to programming the GPU is OpenACC, a set of directives you can add to C code that tell the compiler to transform it to parallelised code that runs on the GPU when available. "We've made it almost trivial for people with legacy applications that have large parallel loops to use directives to get a huge speedup," claims Huang.

OpenACC is not yet implemented, though it is based on an existing product from the Portland Group called PGI Accelerator. Cray and CAPS also plan to have OpenACC support in their compilers. These will require NVIDIA GPUs to get the full benefit, though it is a standard that others could implement. There is a programming standard called OpenCL that is already supported by multiple GPU vendors, but it is lower level and therefore less productive than CUDA or OpenACC.

Best practices for enterprise data

Next page: Blurred lines

More from The Register

next story
Sysadmin Day 2014: Quick, there's still time to get the beers in
He walked over the broken glass, killed the thugs... and er... reconnected the cables*
VMware builds product executables on 50 Mac Minis
And goes to the Genius Bar for support
Multipath TCP speeds up the internet so much that security breaks
Black Hat research says proposed protocol will bork network probes, flummox firewalls
Auntie remains MYSTIFIED by that weekend BBC iPlayer and website outage
Still doing 'forensics' on the caching layer – Beeb digi wonk
Microsoft's Euro cloud darkens: US FEDS can dig into foreign servers
They're not emails, they're business records, says court
Microsoft says 'weird things' can happen during Windows Server 2003 migrations
Fix coming for bug that makes Kerberos croak when you run two domain controllers
Cisco says network virtualisation won't pay off everywhere
Another sign of strain in the Borg/VMware relationship?
prev story

Whitepapers

7 Elements of Radically Simple OS Migration
Avoid the typical headaches of OS migration during your next project by learning about 7 elements of radically simple OS migration.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Solving today's distributed Big Data backup challenges
Enable IT efficiency and allow a firm to access and reuse corporate information for competitive advantage, ultimately changing business outcomes.
A new approach to endpoint data protection
What is the best way to ensure comprehensive visibility, management, and control of information on both company-owned and employee-owned devices?