Feeds

Bristol boffins bring qubit computing a tiny step closer

Spooky action at a VERY SMALL distance

Security for virtualized datacentres

Until now, quantum computing has suffered the same problem that vacuum tubes had in the 1950s: the hardware’s too damn big – a problem addressed by Bristol boffins who have put a reconfigurable two-qubit processor on a single chip.

Just creating and manipulating a pair of qubits usually needs a tabletop’s worth of equipment, explains Professor Jeremy O’Brien, director of Bristol’s Centre for Quantum Photonics.

The university’s 70 x 3 mm chip – still a very large feature size by electronics standards, but tiny in the world of quantum computing – achieves.

Artist impression of Bristol's quantum chip

Artist's impression of the Bristol

quantum chip. Source: Physorg.com

It can’t be regarded as a “processor”, since O’Brien also said that this chip is for conducting experiments, but it’s still a considerable advance.

The chip demonstrated by Bristol allows a variety of experiments: creating entanglement between photon pairs; manipulating photons’ states; and measuring “mixture” impacts on the photons from the outside environment.

The device comprises waveguides for the photons, and electrodes to perform quantum operations on single photons. For example, the electrodes – acting as phase shifters – can control the entangled states of two photons (as O’Brien described them, “IC qubits”), or the mixed (ie, the impact of environmental noise) state of a single photon / ICqubit.

This chip, Dr O’Brien told The Register, works in one degree of freedom – the photon’s path. This still provides very broad entangled states for experimentation: “you can think of the state as being parameterized by several continuous numbers,” O’Brian said. “We can control these parameters continuously using the phase shifters we have on-chip.”

Reconfigurability is the other key characteristic of the device, since many different experiments can be performed on one device, under software control.

The research is published in Nature Photonics

Security for virtualized datacentres

More from The Register

next story
Boffins say they've got Lithium batteries the wrong way around
Surprises at the nano-scale mean our ideas about how they charge could be all wrong
Thought that last dinosaur was BIG? This one's bloody ENORMOUS
Weighed several adult elephants, contend boffins
Europe prepares to INVADE comet: Rosetta landing site chosen
No word yet on whether backup site is labelled 'K'
City hidden beneath England's Stonehenge had HUMAN ABATTOIR. And a pub
Boozed-up ancients drank beer before tearing corpses apart
'Duck face' selfie in SPAAAACE: Rosetta's snap with bird comet
Probe prepares to make first landing on fast-moving rock
Archaeologists and robots on hunt for more Antikythera pieces
How much of the world's oldest computer can they find?
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
Saudi Petroleum chooses Tegile storage solution
A storage solution that addresses company growth and performance for business-critical applications of caseware archive and search along with other key operational systems.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Providing a secure and efficient Helpdesk
A single remote control platform for user support is be key to providing an efficient helpdesk. Retain full control over the way in which screen and keystroke data is transmitted.