Feeds

Bristol boffins bring qubit computing a tiny step closer

Spooky action at a VERY SMALL distance

The smart choice: opportunity from uncertainty

Until now, quantum computing has suffered the same problem that vacuum tubes had in the 1950s: the hardware’s too damn big – a problem addressed by Bristol boffins who have put a reconfigurable two-qubit processor on a single chip.

Just creating and manipulating a pair of qubits usually needs a tabletop’s worth of equipment, explains Professor Jeremy O’Brien, director of Bristol’s Centre for Quantum Photonics.

The university’s 70 x 3 mm chip – still a very large feature size by electronics standards, but tiny in the world of quantum computing – achieves.

Artist impression of Bristol's quantum chip

Artist's impression of the Bristol

quantum chip. Source: Physorg.com

It can’t be regarded as a “processor”, since O’Brien also said that this chip is for conducting experiments, but it’s still a considerable advance.

The chip demonstrated by Bristol allows a variety of experiments: creating entanglement between photon pairs; manipulating photons’ states; and measuring “mixture” impacts on the photons from the outside environment.

The device comprises waveguides for the photons, and electrodes to perform quantum operations on single photons. For example, the electrodes – acting as phase shifters – can control the entangled states of two photons (as O’Brien described them, “IC qubits”), or the mixed (ie, the impact of environmental noise) state of a single photon / ICqubit.

This chip, Dr O’Brien told The Register, works in one degree of freedom – the photon’s path. This still provides very broad entangled states for experimentation: “you can think of the state as being parameterized by several continuous numbers,” O’Brian said. “We can control these parameters continuously using the phase shifters we have on-chip.”

Reconfigurability is the other key characteristic of the device, since many different experiments can be performed on one device, under software control.

The research is published in Nature Photonics

Eight steps to building an HP BladeSystem

More from The Register

next story
Malaysian Airlines flight MH17 claimed lives of HIV/AIDS cure scientists
Researchers, advocates, health workers among those on shot-down plane
Mwa-ha-ha-ha! Eccentric billionaire Musk gets his PRIVATE SPACEPORT
In the Lone Star State, perhaps appropriately enough
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Diary note: Pluto's close-up is a year from … now!
New Horizons is less than a year from the dwarf planet
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Microsoft's anti-bug breakthrough: Wire devs to BRAIN SCANNERS
Clippy: It looks your hands are shaking, are you sure you want to commit this code?
prev story

Whitepapers

Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.