Feeds

Future of computing crystal-balled by top chip boffins

Bad news: It's going to be tough. Good news: You won't be replaced

Remote control for virtualized desktops

Coming soon to an Intel chip near you...

Borkar, Faggin, and Bohr all agree that it was about a decade ago when it became clear that pure Dennard scaling wasn't going to cut it.

As we pointed out when celebrating the 4004's 40th birthday earlier this month, the first major process-technology innovation was strained silicon, which increased electron mobility while tamping down current leakage. Intel's first strained silicon processor was the "Prescott" Pentium 4 of 2004.

After strained silicon came high-k metal gate technology, which debuted with Intel's 45nm process in 2007. This advance added a better-insulating gate oxide and a metal gate to further reduce leakage and improve performance.

Next up is what Intel calls "3D" or "tri-gate" transistor technology, in which the channel doesn't lie flat, but instead sticks up into the gate, offering a larger channel surface area in a smaller geometry. Tri-gate transistors will be first used in Intel's 22nm "Ivy Bridge" chips, scheduled to ship next year.

But that increased surface is not the best thing about tri-gate, Bohr told us. "There is a benefit from an increased channel area, but it's not the big one," he said. "The big benefit is that as you are forming the transistor on a narrow, vertical silicon fin, or pillar, the electrostatics are improved – the gate electrode has better control of the channel area. The result is a device that's called 'fully depleted'."

If you're having trouble undersanding why that's important, the answer is really rather straightforward: the big advantage of a fully depleted transistor design is that it has a steeper sub-threshold slope – which means, essentially, that since the transistor's on-current versus off-current characteristics are improved, the transistor can have a higher on-current when it's switched on, improving performance, and a lower off-current when it's switched off, reducing power leakage.

Pawlowski – being a microarchitect and not a process technologist, has nothing but admiration for the engineers who create the silicon upon which his designs run. "The process guys are phenomenal. They really are," he told us. Referring to how the "process guys" manage to remain on a cadence of every 18 months to two years to bring out new process technologies, he said, "They're a machine."

Mark Bohr

Mark Bohr

Pawlowski doesn't see that cadence stumbling anytime soon. "I see them scaling to sub-10 nanometers well into 2020, 2022," he said. "And it's going to be our challenge of being able to use the transistors that are given us in a more efficient fashion."

That decade-or-so prediction is about right, thinks Borkar. "We're very confident that for the next 10 years, there is Moore's Law, there's no doubt about it," he said. "After that it's hazy.

Faggin extended Brokar's estimate to 20 years. "The mainstream for the next 10, 20 years is more of the same: faster processor, more cores, blah, blah, blah – all this stuff that we have been doing for the last 40 years," he said.

But the future is always hazy, Borkar says. "Ten years ago if you had asked me that, I would have said that."

But there are parts of that haze that are less hazy than others, Fagin says. "There are new things appearing at the horizon. First of all, we are beginning to come to the end of the road in terms of reducing the physical size of transistors. And so we have to find new ways of actually building these things – new materials to use, and so on."

Materials-man Bohr has some ideas as to what those materials might be – namely what are called III-V materials such as gallium arsinide and indium phosphide, which are given those Roman-numeral designations to indicate the number of their "valence electrons", the electrons in the outer shell of an atom that govern that element's interaction with other elements.

As Intel marches its process size down to 14nm, then 10nm, then 7nm, Bohr says, one area of investigation will be on using III-V materials to coat the silicon substrate. III-V materials will provide higher electron mobility, thus allowing transistors created in this way to be operated at lower voltages and lower leakages.

But Bohr emphasized to us that silicon will still be the core material in play. "Please don't have the mistaken impression that we will be changing from silicon wafers to gallium arsinide wafers," he said. "That's not what we will do. What we will do is stay with a silicon wafer, and then deposit some very thin layers on top of that wafer that are these special III-V materials."

Such a relatively straightforward coating process would have the added benefit of keeping incremental costs-per-chip low. "So it's not going to be a major cost increase," he said – but then added: "But it will increase somewhat the cost and complexity of what we do, but that's kind of name of the game for the past ten years."

Transistor structures might change, as well, as they have with Intel's tri-gate technology. But as to what those changes might be, no one was talking. "There are lots of thiings on the drawing board," Borkar said. "It is not very clear what the winner is. It's real early."

Bohr agreed. "We are clearly in an era now where we have to be almost continually changing, improving, inventing new materials and new transistor structures. I think you'll see more of that in coming generations."

Intelligent flash storage arrays

More from The Register

next story
Hi-torque tank engines: EXTREME car hacking with The Register
Bentley found in a hedge gets WW2 lump insertion
What's MISSING on Amazon Fire Phone... and why it WON'T set the world alight
You fought hard and you saved and earned. But all of it's going to burn...
Trousers down for six of the best affordable Androids
Stylish Googlephones for not-so-deep pockets
Download alert: Nearly ALL top 100 Android, iOS paid apps hacked
Attack of the Clones? Yeah, but much, much scarier – report
Fujitsu CTO: We'll be 3D-printing tech execs in 15 years
Fleshy techie disses network neutrality, helmet-less motorcyclists
prev story

Whitepapers

Go beyond APM with real-time IT operations analytics
How IT operations teams can harness the wealth of wire data already flowing through their environment for real-time operational intelligence.
10 threats to successful enterprise endpoint backup
10 threats to a successful backup including issues with BYOD, slow backups and ineffective security.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Website security in corporate America
Find out how you rank among other IT managers testing your website's vulnerabilities.