Feeds

Atomic time boffins build better second-watcher

NPL and precision on the final frontier

Choosing a cloud hosting partner with confidence

Black-body radiation,gravity, and other pesky problems

The caesium atoms inside the clock, though, do get bothered: up to 12 forces from outside create "statistical noise". The same forces affect the other five clocks, too.

These forces include black-body radiation, cold collisions, lasers shining on the wrong atoms, and both the earth's magnetic field and gravity. Take gravity, for example. To measure a second at NPL in London requires a different calibration to the NIST Atomic Clock in Fort Collins, Colorado, to compensate for the effects of gravity. NPL is at an elevation of 79 feet above sea level and suffers more from the effects of gravity on its results than Fort Collins, which is more than 3,315 ft, above sea level in the Rocky Mountains in Boulder Colorado, where the effect of gravity is less.

The hardest factor to eliminate, however, is not gravity: it's that Doppler-like distributed cavity phase the third generation of NPL's clock hopes to mitigate further. Measuring the flip of caesium atoms in the clock is made difficult because the atoms and the microwaves are both moving - hence Doppler effect.

By building a better cavity in NPL-CSF3, the physicists hope they can gain more control over the flow of the atoms for a more precise reading. Gibble's work proposes changes in the geometry of the cavity to reduce further the Doppler effect.

CSF2's cavity has an internal diameter of 4.3cm and a height of 4.3cm, while the component's walls are about one centimetre thick. The external dimensions are larger. Szymaniec reckons NPL will probably approach Gibble to model the new cavity's heat field. "If we are really crazy about reducing this effect we'd follow the design he's proposing," Krzysztof says.

The shape of the new cavity will differ to the one. While still cylindrical, the new cavity will feature staggered end cups to help avoid large phase gradients near sharp edges. Also the microwave energy will be fed to the cavity through four feeds, instead of the current two, to improve the phase distribution uniformity.

NPL-CSF3 isn't the end of work to finally nail the second, however, and NPL, along with NIST in Boulder, the Physikalisch-Technische Bundesanstalt in Germany, SYRTE in Paris and the University of Tokyo are now working on a generation of optical clocks using lasers as the source of radiation rather than microwaves. Laser frequencies are higher so there the errors are smaller and statistical noise is reduced.

"That's in the future; early experiments are promising," Krzysztof told us.

What NPL's man called the "lowest uncertainties" in the results taken from optical clocks have been found in the measurements taken by NIST.

Changing elements

The move to lasers will likely mean the end of the atomic clock as Essen conceived and built it because the optical clocks will need to move off caesium. The reason is that this chemical element doesn't stay excited for long enough using lasers for the physicists to get an accurate reading.

"We'd never have the time to measure the frequency," Krzysztof said.

The optical clocks measure the second either using a process of transitions in single atoms trapped in electromagnetic traps or large numbers of neutral atoms held in traps formed by interfering laser beams – called optical lattices.

The most popular substitutes for caesium so far? Strontium, Ytterbium, and mercury, although NIST uses positively charged aluminium ions – or more precisely AI+ – aluminium with one electron removed to make readings easier.

Szymaniec cautions that while results from optical clocks are encouraging, they are preliminary and such clocks remain in the future. Ahead of that, the third-generation of Essen's offspring is limbering just as humans prepare to depend on it more. ®

Intelligent flash storage arrays

More from The Register

next story
Antarctic ice THICKER than first feared – penguin-bot boffins
Robo-sub scans freezing waters, rocks warming models
I'll be back (and forward): Hollywood's time travel tribulations
Quick, call the Time Cops to sort out this paradox!
Your PHONE is slowly KILLING YOU
Doctors find new Digitillnesses - 'text neck' and 'telepressure'
Reuse the Force, Luke: SpaceX's Elon Musk reveals X-WING designs
And a floating carrier for recyclable rockets
Britain's HUMAN DNA-strewing Moon mission rakes in £200k
3 days, and Kickstarter moves lander 37% nearer takeoff
Rosetta science team thinks Philae might come to life in the spring
And disclose the biggest surprise of Comet 67P
Bond villains lament as Wicked Lasers withdraw death ray
Want to arm that shark? Better get in there quick
prev story

Whitepapers

10 ways wire data helps conquer IT complexity
IT teams can automatically detect problems across the IT environment, spot data theft, select unique pieces of transaction payloads to send to a data source, and more.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
How to determine if cloud backup is right for your servers
Two key factors, technical feasibility and TCO economics, that backup and IT operations managers should consider when assessing cloud backup.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Choosing a cloud hosting partner with confidence
Download Choosing a Cloud Hosting Provider with Confidence to learn more about cloud computing - the new opportunities and new security challenges.