Feeds

Happy 40th birthday, Intel 4004!

The first of the bricks that built the IT world

The Power of One Brief: Top reasons to choose HP BladeSystem

Feeling the strain

But before it did, there was work to be done on process technology, and the introduction of the first of the three major post-scaling technologies that Mark Bohr talked about: strained silicon.

Intel Pentium II

Intel Pentium II: 233MHz, 266MHz, or 300MHz; 0.35-micron process (click to enlarge)

In a highly simplified nutshell, strained silicon involves the material being stretched – or strained – in such a way as to pull the individual silicon atoms apart from one another. Doing so frees up the electrons and holes in the material, increasing their mobility substantially, thus allowing for lower-power transistor designs.

Although strained silicon had been under investigation at MIT and elsewhere, the early techniques were was biaxial – that is, the entire silicon lattice was stretched. Intel's breakthrough was the development of uniaxial stretching. Biaxial straining was good for nMOS but bad for pMOS, both of which need to be balanced for good transistor performance.

Biaxial straining also had problems with source drain and defects, Bohr told us – "not a very manufacturable technology". The uniaxial approach, however, could be applied "just to the pMOS device," Bohr said, "and it didn't have any significant yield issues, so it turned out to be both a high-performance solution and a good manufacturing solution."

Intel Pentium III Xeon

Intel Pentium III Xeon: 600MHz to 1GHz, 0.18-micron process (click to enlarge)

But back to the departure and then the return of P6.

The follow-on architecture to P6 was NetBurst, and it was not exactly Intel's finest hour. By the time P6 had evolved into the Pentium III, its pipeline was just 10 stages long; NetBurst doubled that to 20 stages in the Willamette Pentium 4 in 2000, and increased that "Hyper Pipelined Technology" to 31 stages in the Prescott Pentium 4 in 2004 – which, by the way, was the first processor to use Bohr's 90nm strained silicon process technology.

According to Pawlowski, the reason for the deeper pipeline was "frequency, frequency, frequency". In a bit – well, more than a bit – of an oversimplification, deep pipelines require higher frequencies to achieve the same performance as architectures with shorter pipelines.

Application security programs and practises

More from The Register

next story
iPad? More like iFAD: We reveal why Apple fell into IBM's arms
But never fear fanbois, you're still lapping up iPhones, Macs
Cheer up, Nokia fans. It can start making mobes again in 18 months
The real winner of the Nokia sale is *drumroll* ... Nokia
Bose says today is F*** With Dre Day: Beats sued in patent battle
Music gear giant seeks some of that sweet, sweet Apple pie
Apple orders huge MOUNTAIN of 80 MILLION 'Air' iPhone 6s
Bigger, harder trouser bulges foretold for fanbois
BEST BATTERY EVER: All lithium, all the time, plus a dash of carbon nano-stuff
We have found the Holy Grail (of batteries) - boffins
Microsoft confirms secret Surface will never see the light of day
Microsoft's form 8-K records decision 'not to ship a new form factor'
prev story

Whitepapers

Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Top 8 considerations to enable and simplify mobility
In this whitepaper learn how to successfully add mobile capabilities simply and cost effectively.
Seven Steps to Software Security
Seven practical steps you can begin to take today to secure your applications and prevent the damages a successful cyber-attack can cause.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.