Feeds

Happy 40th birthday, Intel 4004!

The first of the bricks that built the IT world

Secure remote control for conventional and virtual desktops

Feeling the strain

But before it did, there was work to be done on process technology, and the introduction of the first of the three major post-scaling technologies that Mark Bohr talked about: strained silicon.

Intel Pentium II

Intel Pentium II: 233MHz, 266MHz, or 300MHz; 0.35-micron process (click to enlarge)

In a highly simplified nutshell, strained silicon involves the material being stretched – or strained – in such a way as to pull the individual silicon atoms apart from one another. Doing so frees up the electrons and holes in the material, increasing their mobility substantially, thus allowing for lower-power transistor designs.

Although strained silicon had been under investigation at MIT and elsewhere, the early techniques were was biaxial – that is, the entire silicon lattice was stretched. Intel's breakthrough was the development of uniaxial stretching. Biaxial straining was good for nMOS but bad for pMOS, both of which need to be balanced for good transistor performance.

Biaxial straining also had problems with source drain and defects, Bohr told us – "not a very manufacturable technology". The uniaxial approach, however, could be applied "just to the pMOS device," Bohr said, "and it didn't have any significant yield issues, so it turned out to be both a high-performance solution and a good manufacturing solution."

Intel Pentium III Xeon

Intel Pentium III Xeon: 600MHz to 1GHz, 0.18-micron process (click to enlarge)

But back to the departure and then the return of P6.

The follow-on architecture to P6 was NetBurst, and it was not exactly Intel's finest hour. By the time P6 had evolved into the Pentium III, its pipeline was just 10 stages long; NetBurst doubled that to 20 stages in the Willamette Pentium 4 in 2000, and increased that "Hyper Pipelined Technology" to 31 stages in the Prescott Pentium 4 in 2004 – which, by the way, was the first processor to use Bohr's 90nm strained silicon process technology.

According to Pawlowski, the reason for the deeper pipeline was "frequency, frequency, frequency". In a bit – well, more than a bit – of an oversimplification, deep pipelines require higher frequencies to achieve the same performance as architectures with shorter pipelines.

The essential guide to IT transformation

More from The Register

next story
Apple's iWatch? They cannae do it ... they don't have the POWER
Analyst predicts fanbois will have to wait until next year
The agony and ecstasy of SteamOS: WHERE ARE MY GAMES?
And yes it does need a fat HDD (or SSD, it's cool with either)
Barnes & Noble: Swallow a Samsung Nook tablet, please ... pretty please
Novelslab finally on sale with ($199 - $20) price tag
Kate Bush: Don't make me HAVE CONTACT with your iPHONE
Can't face sea of wobbling fondle implements. What happened to lighters, eh?
Apple to build WORLD'S BIGGEST iStore in Dubai
It's not the size of your shiny-shiny...
Just in case? Unverified 'supersize me' iPhone 6 pics in sneak leak peek
Is bigger necessarily better for the fruity firm's flagship phone?
Steve Jobs had BETTER BALLS than Atari, says Apple mouse designer
Xerox? Pff, not even in the same league as His Jobsiness
Apple analyst: fruity firm set to shift 75 million iPhones
We'll have some of whatever he's having please
prev story

Whitepapers

Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
7 Elements of Radically Simple OS Migration
Avoid the typical headaches of OS migration during your next project by learning about 7 elements of radically simple OS migration.
BYOD's dark side: Data protection
An endpoint data protection solution that adds value to the user and the organization so it can protect itself from data loss as well as leverage corporate data.
Consolidation: The Foundation for IT Business Transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?