Feeds

Boffins whip up SELF-WIRING chip

Electrons steered through new nanomaterial

5 things you didn’t know about cloud backup

Boffins have developed a new nanoscale material that could potentially allow computers to rewire themselves according to the user's needs.

Scientists at Northwestern University decided to look at the problem of teeny-tiny circuits in ever-shrinking electronic devices in a new way, by coming up with a material that can be a resistor, a rectifier, a diode or a transistor depending on signals from a computer.

"Our new steering technology allows use to direct current flow through a piece of continuous material," said Bartosz A Grzybowski, the top brain on the research. "Like redirecting a river, streams of electrons can be steered in multiple directions through a block of the material - even multiple streams flowing in opposing directions at the same time."

The researchers put together some silicon-based and some polymer-based circuits to come up with nanoparticle-based electronics.

This new material consists of electrically conductive particles, five nanometres wide, coated with a positively charged chemical. These particles are swimming in a sea of negatively charged atoms, which are reconfigured as needed by applying an electrical charge.

The first study, in which the scientists made preliminary electronic components, explained:

By moving this sea of negative atoms around the material, regions of low and high conductance can be modulated; the result is the creation of a directed path that allows electrons to flow through the material. Old paths can be erased and new paths created by pushing and pulling the sea of negative atoms. More complex electrical components, such as diodes and transistors, can be made when multiple types of nanoparticles are used.

David A Walker, another boffin on the research, said the material could be used to allow a computer to rewire itself.

"Besides acting as three-dimensional bridges between existing technologies, the reversible nature of this new material could allow a computer to redirect and adapt its own circuitry to what is required at a specific moment in time," he explained.

The paper was published today in the journal Nature Nanotechnology. ®

The essential guide to IT transformation

More from The Register

next story
So, Apple won't sell cheap kit? Prepare the iOS garden wall WRECKING BALL
It can throw the low cost race if it looks to the cloud
Samsung Gear S: Quick, LAUNCH IT – before Apple straps on iWatch
Full specs for wrist-mounted device here ... but who'll buy it?
Apple promises to lift Curse of the Drained iPhone 5 Battery
Have you tried turning it off and...? Never mind, here's a replacement
Now that's FIRE WIRE: HP recalls 6 MILLION burn-risk laptop cables
Right in the middle of Burning Mains Man week
Chumps stump up $1 MEELLLION for watch that doesn't exist
By the way, I have a really nice bridge you might like...
HUGE iPAD? Maybe. HUGE ADVERTS? That's for SURE
Noo! Hand not big enough! Don't look at meee!
AMD unveils 'single purpose' graphics card for PC gamers and NO ONE else
Chip maker claims the Radeon R9 285 is 'best in its class'
prev story

Whitepapers

Endpoint data privacy in the cloud is easier than you think
Innovations in encryption and storage resolve issues of data privacy and key requirements for companies to look for in a solution.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Advanced data protection for your virtualized environments
Find a natural fit for optimizing protection for the often resource-constrained data protection process found in virtual environments.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.