Feeds

Supercomputer and superboffins spot rare baby supernova

Dark matter secrets probed

SANS - Survey on application security programs

Not just any supernova...

First, it's a Type 1a supernova, especially interesting to astronomers because these supernovae were used in the 1990's to determine that the expansion of the universe is accelerating, and are used in the search for dark matter. Unfortunately, more needs to be learned about Type 1a supernovae before they can be used to help better understand accelerating universal expansion and dark matter, and PTF 11kly should provide excellent data.

Type 1a supernovae are believed to be the death throes of white dwarves, stars with masses of about 1.4 times that of our sun. As Nugent explains the supernova process, the white dwarf is "accreting material from its companion, and when it gets massive enough, the temperatures on the inside can ignite the carbon in a runaway thermonuclear explosion."

Images taken of PTF 11kly's location by the Hubble Space Telescope in 2002 show what appear to be two red giants in the vicinity. If that's indeed what Hubble's pixels picture, that'd fit well into the accretion scenario that Nugent paints – one or both of those giants could have provided the meal that led to PTF 11kly's explosion.

This type of supernova is unique. "We know that these [white dwarves] are pretty old stars," Nugent says, "because we see them in both young galaxies and old galaxies, and all the other types of supernovae we only see in very young galaxies."

Another huge reason that PTF 11kly is such great candidate for study is that it's exploding almost next door – only around 21 million light-years away in the Pinwheel Galaxy, more properly known as M101, which can be found in the Big Dipper, more properly known as Ursa Major. It's the closest supernova of its type discovered since 1986 – and that one, Nugent says, was obscured by dust. "Before that, you'd have to go back to 1972, 1937, and 1572 to find more nearby Type 1a supernovae."

Finally, PTF 11kly was discovered mere hours after it first exploded – well, a few hours plus 21 million years, but let's not quibble.

Enter the humans

The baby supernova was picked out of the reams of PTF data by a combination of computer power and human intelligence. The filtering process that Carver uses to trim those one million anomalies down to a few hundred was developed by Josh Bloom, an associate professor of astronomy at the University of California, Berkeley.

To develop the machine-learning algorithm that he created, a large group of experts went through prefiltered anomaly data, and classified each anomaly as to whether it was of interest or not. Bloom then took those observations and developed what Nugent calls a "boosted decision tree" to filter and categorize the millions of nightly anomalies into a manageable number of reasonable possibilities.

After each pass through the PTF data, those few hundred possibilities are distributed to a group of "citizen scientist" supernova seekers – yes, actual humans – known as the Galaxy Zoo team (which describes itself as "very small and very busy"), who eyeball the possibilities to attempt to discover actual supernovae, along with a bot that Bloom developed that also roams through the data.

Nugent is one of those final filterers – and he was lucky enough to be in the right place at the right time. "Wednesday at noon, California time, was when I looked and said, 'Okay, database, tell me what the best one we have from last night is', and – boom – it was there," he said. And it hadn't been there in the previous night's readings.

Type 1a supernova PTF 11kly expanding

Monday (left), nothing. Tuesday (center), maybe. Wednesday (right), yup – supernova (click to enlarge)

"At first I was completely skeptical. I thought it was an asteroid passing in front of the galaxy, but then I searched the asteroid database and, nope, there was nothing there. Then because it was so faint, I said 'Well, this could be a nova' – which is another type of outburst, but not as interesting to us. And, no, that wasn't quite right."

Nugent then took advantage of a computer far less powerful than Carver. "Fortunately, I happened to be online and chatting with Mark Sullivan in England, and he said, 'Well, the sun is setting in the Canary Islands right now. We can have them take a spectrum of this object and let us know.' And so that happened three hours after I found it – they took a spectrum, and confirmed it was a supernova."

And not just any supernova, but "a very young, Type 1a supernova" as identified by the strong silicon lines that the Liverpool Telescope on the Canary island of LaPalma, Spain, identified in its spectrum.

After the Liverpool Telescope's confirmation, Sullivan emailed that team about its quick response: "Wow, what fun! From an email alert to data in <1 hour."

That "fun" is now being shared worldwide, thanks to the PTF network. Within 12 hours, PTF 11kly's Type 1a designation had been confirmed by California's Lick Observatory and Hawaii's powerful Keck Observatory, and many more telescopes around the world are making observations and gathering data. Thanks to an urgent request to NASA, the Hubble will take a look this weekend, as well.

"When you catch them this early, mixed in with the explosion you can actually see unburned bits from star that exploded!" effused Andrew Howell of UC Santa Barbara, exemplifying the excitement of astronomers worldwide. "Despite looking at thousands of supernovae, I've never seen anything like this before," he said.

It's possible that you may not even need a telescope to see PTF 11kly. "The best time to see this exploding star will be just after evening twilight in the Northern hemisphere in a week or so," says Sullivan. "You'll need dark skies and a good pair of binoculars, although a small telescope would be even better."

Just look for the Big Dipper and track down that Pinwheel with the help of Stargazers Lounge. And if you still can't find it, you might ask your friendly neighborhood supercomputer for assistance. ®

Top three mobile application threats

More from The Register

next story
Red-faced LOHAN team 'fesses up in blown SPEARS fuse fiasco
Standing in the corner, big pointy 'D' hats
KILLER SPONGES menacing California coastline
Surfers are safe, crustaceans less so
LOHAN's Punch and Judy show relaunches Thursday
Weather looking good for second pop at test flights
Discovery time for 200m WONDER MATERIALS shaved from 4 MILLENNIA... to 4 years
Alloy, Alloy: Boffins in speed-classification breakthrough
Curiosity finds not-very-Australian-shaped rock on Mars
File under 'messianic pastries' and move on, people
Elon Musk's LEAKY THRUSTER gas stalls Space Station supply run
Helium seeps from Falcon 9 first stage, delays new legs for NASA robonaut
Top Secret US payload launched into space successfully
Clandestine NRO spacecraft sets off on its unknown mission
New FEMTO-MOON sighted BIRTHING from Saturn's RING
Icy 'Peggy' looks to be leaving the outer rings
Melting permafrost switches to nasty, high-gear methane release
Result? 'Way more carbon being released into the atmosphere as methane'
prev story

Whitepapers

Designing a defence for mobile apps
In this whitepaper learn the various considerations for defending mobile applications; from the mobile application architecture itself to the myriad testing technologies needed to properly assess mobile applications risk.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.