Feeds

Supercomputer and superboffins spot rare baby supernova

Dark matter secrets probed

Build a business case: developing custom apps

A newborn, nearby supernova with the potential to significantly improve our knowledge of the universe has been discovered by a supercomputer, two telescopes on opposite sides of the world, a sharp-eyed astronomer, and his helpful Oxford colleague.

The Reg spoke with Peter Nugent, the California astronomer who first spotted the supernova, and who is a senior staff scientist at Lawrence Berkeley Lab and an adjunct professor of astronomy at the University of California, Berkeley.

Nugent explained that images of the exploding star were captured by the Palomar Transient Factory (PTF) survey, using the 48-inch Samuel Oschin Telescope in Palomar Mountain, California. PTF scans the sky nightly, and sends its data to the National Energy Research Scientific Computing Center (NERSC) in Berkeley for analysis.

Sifting through that data to uncover such nuggets as the new supernova now known rather prosaically as PTF 11kly requires the combined efforts of man and beast – the beast in this case being NERSC's Carver IBM iDataPlex system.

Carver is the junior partner in NERSC's supercomputer team, with 400 compute nodes, each with two Nehalem quad-cores. When all 3,200 cores are up and running, Carver has a theoretical peak performance of 34 teraflops per second. NERSC also houses Franklin, a massively parallel Cray XT4 with 38,128 Opteron compute cores that, at 352 Tflop/sec, puts out over ten times Carver's peak flops.

The big girl on NERSC's team, Hopper, is far and away more powerful still: it's a Cray XE6 with 153,216 compute cores that came in fifth in November 2010's Top500 List, with a sustained performance of 1.05 petaflops/sec.

The Carver IBM iDataPlex system at the US National Energy Research Scientific Computing Center

The Carver IBM iDataPlex at the US National Energy Research Scientific Computing Center (click to enlarge)

Although Nugent and his team also use Hopper when the need arises, Carver was the machine of the moment during the run that discovered PTF 11kly – and very little of Carver was involved, to boot. A typical daily PTF workload uses about 60 of Carver's cores, but "The night we were doing it," Nugent told us, "we were trying to catch up, so we were on about 120 cores throughout the night.

"That's the nice thing about NERSC having all these cores available," he said. "We could just increase the load with just one change in one line in a piece of code and, boom, it just goes off and grabs more processors."

The method that the PTF projects uses to track down supernovae is straightforward, if maddeningly detailed. Images taken by the Samuel Oschin Telescope are compared with enhanced images taken at the beginning of the survey – if there are differences, they're flagged and logged in a database.

That may sound simple, but as Nugent explains, "There are lots of artifacts on the images, and of course there'll be some new things – there'll be asteroids, there'll be variable stars, and occasionally there'll be a supernova."

When Nugent says "a lot" of artifacts, he's not exaggerating. "Every night we typically get about one million candidates that pass some sort of threshold, and of those, only about a few hundred are actually real, and of those few hundred, only about two are interesting new supernova."

The PTF project has discovered over one thousand supernovae since it started up in 2008, but PTF 11kly is not simply another interesting new supernova, it's an exceptionally valuable source of scientific data.

Secure remote control for conventional and virtual desktops

More from The Register

next story
Boffins attempt to prove the UNIVERSE IS JUST A HOLOGRAM
Is this the real life? Is this just fantasy?
Our LOHAN spaceplane ballocket Kickstarter climbs through £8000
Through 25 per cent but more is needed: Get your UNIQUE rewards!
China building SUPERSONIC SUBMARINE that travels in a BUBBLE
Shanghai to San Fran in two hours would be a trick, though
LOHAN tunes into ultra long range radio
And verily, Vultures shall speak status unto distant receivers
SpaceX prototype rocket EXPLODES over Texas. 'Tricky' biz, says Elon Musk
No injuries or near injuries. Flight stayed in designated area
Galileo, Galileo! Galileo, Galileo! Galileo fit to go. Magnifico
I'm just a poor boy, nobody loves me. But at least I can find my way with ESA GPS by 2017
EOS, Lockheed to track space junk from Oz
WA facility gets laser-eyes out of the fog
prev story

Whitepapers

Top 10 endpoint backup mistakes
Avoid the ten endpoint backup mistakes to ensure that your critical corporate data is protected and end user productivity is improved.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Backing up distributed data
Eliminating the redundant use of bandwidth and storage capacity and application consolidation in the modern data center.
The essential guide to IT transformation
ServiceNow discusses three IT transformations that can help CIOs automate IT services to transform IT and the enterprise
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.