Feeds

Supercomputer and superboffins spot rare baby supernova

Dark matter secrets probed

Choosing a cloud hosting partner with confidence

A newborn, nearby supernova with the potential to significantly improve our knowledge of the universe has been discovered by a supercomputer, two telescopes on opposite sides of the world, a sharp-eyed astronomer, and his helpful Oxford colleague.

The Reg spoke with Peter Nugent, the California astronomer who first spotted the supernova, and who is a senior staff scientist at Lawrence Berkeley Lab and an adjunct professor of astronomy at the University of California, Berkeley.

Nugent explained that images of the exploding star were captured by the Palomar Transient Factory (PTF) survey, using the 48-inch Samuel Oschin Telescope in Palomar Mountain, California. PTF scans the sky nightly, and sends its data to the National Energy Research Scientific Computing Center (NERSC) in Berkeley for analysis.

Sifting through that data to uncover such nuggets as the new supernova now known rather prosaically as PTF 11kly requires the combined efforts of man and beast – the beast in this case being NERSC's Carver IBM iDataPlex system.

Carver is the junior partner in NERSC's supercomputer team, with 400 compute nodes, each with two Nehalem quad-cores. When all 3,200 cores are up and running, Carver has a theoretical peak performance of 34 teraflops per second. NERSC also houses Franklin, a massively parallel Cray XT4 with 38,128 Opteron compute cores that, at 352 Tflop/sec, puts out over ten times Carver's peak flops.

The big girl on NERSC's team, Hopper, is far and away more powerful still: it's a Cray XE6 with 153,216 compute cores that came in fifth in November 2010's Top500 List, with a sustained performance of 1.05 petaflops/sec.

The Carver IBM iDataPlex system at the US National Energy Research Scientific Computing Center

The Carver IBM iDataPlex at the US National Energy Research Scientific Computing Center (click to enlarge)

Although Nugent and his team also use Hopper when the need arises, Carver was the machine of the moment during the run that discovered PTF 11kly – and very little of Carver was involved, to boot. A typical daily PTF workload uses about 60 of Carver's cores, but "The night we were doing it," Nugent told us, "we were trying to catch up, so we were on about 120 cores throughout the night.

"That's the nice thing about NERSC having all these cores available," he said. "We could just increase the load with just one change in one line in a piece of code and, boom, it just goes off and grabs more processors."

The method that the PTF projects uses to track down supernovae is straightforward, if maddeningly detailed. Images taken by the Samuel Oschin Telescope are compared with enhanced images taken at the beginning of the survey – if there are differences, they're flagged and logged in a database.

That may sound simple, but as Nugent explains, "There are lots of artifacts on the images, and of course there'll be some new things – there'll be asteroids, there'll be variable stars, and occasionally there'll be a supernova."

When Nugent says "a lot" of artifacts, he's not exaggerating. "Every night we typically get about one million candidates that pass some sort of threshold, and of those, only about a few hundred are actually real, and of those few hundred, only about two are interesting new supernova."

The PTF project has discovered over one thousand supernovae since it started up in 2008, but PTF 11kly is not simply another interesting new supernova, it's an exceptionally valuable source of scientific data.

Secure remote control for conventional and virtual desktops

More from The Register

next story
GRAV WAVE DRAMA: 'Big Bang echo' may have been grit on the scanner – boffins
Exit Planet Dust on faster-than-light expansion of universe
Mine Bitcoins with PENCIL and PAPER
Forget Sudoku, crunch SHA-256 algos
SpaceX Dragon cargo truck flies 3D printer to ISS: Clawdown in 3, 2...
Craft berths at space station with supplies, experiments, toys
'This BITE MARK is a SMOKING GUN': Boffins probe ancient assault
Tooth embedded in thigh bone may tell who pulled the trigger
DOLPHINS SMELL MAGNETS – did we hear that right, boffins?
Xavier's School for Gifted Magnetotaceans
Big dinosaur wowed females with its ENORMOUS HOOTER
That's right, Doris, I've got biggest snout in the prehistoric world
Japanese volcano eruption reportedly leaves 31 people presumed dead
Hopes fade of finding survivors on Mount Ontake
That glass of water you just drank? It was OLDER than the SUN
One MEELLION years older. Some of it anyway
Canberra drone team dances a samba in Outback Challenge
CSIRO's 'missing bushwalker' found and watered
prev story

Whitepapers

Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.