Feeds

OCZ samples twin-core ARM SSD controller

Do you need a bit of TLC?

5 things you didn’t know about cloud backup

OCZ is sampling a new flash controller that gives a picture of future solid state drives.

The company bought Indilinx for its solid state drive (SSD) controller technology in March this year and has now unveiled the Indilinx Everest controller platform.

It has a 6Gbit/s SATA III interface, a dual-core ARM processor and a number of enticing features, such as 3-bit multi-level cell (MLC) support. This is going to be called TLC, for triple-level cell, to distinguish it from today's MLC, which is 2-bit MLC.

OCZ said the platform will support flash process geometries down to the 19-10nm range (1x). Today we have flash in the 39-30nm range (3x) which is transitioning to 29-20nm (2X). With each downwards jump the number of flash dies on a wafer increases and the cost/die shrinks.

OCZ says Everest supports up to 200 mega-transfers/sec whereas today's controllers, such as the Sandforce ones used by OCZ, support up to 166MT/sec or so. The device also supports 1TB capacity SSDs and has an 8-channel design with 16-way interleaving that supports ONFI 2.0 and Toggle 1.0. This will provide sequential bandwidth up to 500MB/sec.

There is a 400MHz DDR3 DRAM cache facility that can support up to 512MB of such cache. The controller is optimised for 8K writes – which matches, the 8K page size typical of the latest flash, OCZ says.

SSDs powered by this controller can have their boot time cut in half compared to today's controllers because of OCZ's boot-reduction time algorithms. This, OCZ says, will support "instant on" requirements.

It supports TRIM, SMART, NCQ with a queue depth of 32, 70-bit ECC, and many over-provisioning options to extend the SSD's working life. It also has OCZ proprietary Ndurance technology to extend flash's working life.

OCZ says it is available for evaluation now by OEMs and, we presume, OCZ will be using it in its own flash products. We're looking at 1TB SSDs using TLC flash, shipping sequential data out at 500MB/sec which boot quickly, and could be combined to provide multi-TB flash data stores. Parallelising data access would provide multi-GB/sec I/O. The flash future looks bright. ®

Build a business case: developing custom apps

More from The Register

next story
Microsoft: Azure isn't ready for biz-critical apps … yet
Microsoft will move its own IT to the cloud to avoid $200m server bill
Shoot-em-up: Sony Online Entertainment hit by 'large scale DDoS attack'
Games disrupted as firm struggles to control network
Silicon Valley jolted by magnitude 6.1 quake – its biggest in 25 years
Did the earth move for you at VMworld – oh, OK. It just did. A lot
VMware's high-wire balancing act: EVO might drag us ALL down
Get it right, EMC, or there'll be STORAGE CIVIL WAR. Mark my words
Forrester says it's time to give up on physical storage arrays
The physical/virtual storage tipping point may just have arrived
Better be Nimble, tech giants, or mutant upstarts will make off with your sales
Usual suspects struggling to create competing products
VMware vaporises vCHS hybrid cloud service
AnD yEt mOre cRazy cAps to dEal wIth
prev story

Whitepapers

A new approach to endpoint data protection
What is the best way to ensure comprehensive visibility, management, and control of information on both company-owned and employee-owned devices?
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Maximize storage efficiency across the enterprise
The HP StoreOnce backup solution offers highly flexible, centrally managed, and highly efficient data protection for any enterprise.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.