Feeds

OCZ samples twin-core ARM SSD controller

Do you need a bit of TLC?

Boost IT visibility and business value

OCZ is sampling a new flash controller that gives a picture of future solid state drives.

The company bought Indilinx for its solid state drive (SSD) controller technology in March this year and has now unveiled the Indilinx Everest controller platform.

It has a 6Gbit/s SATA III interface, a dual-core ARM processor and a number of enticing features, such as 3-bit multi-level cell (MLC) support. This is going to be called TLC, for triple-level cell, to distinguish it from today's MLC, which is 2-bit MLC.

OCZ said the platform will support flash process geometries down to the 19-10nm range (1x). Today we have flash in the 39-30nm range (3x) which is transitioning to 29-20nm (2X). With each downwards jump the number of flash dies on a wafer increases and the cost/die shrinks.

OCZ says Everest supports up to 200 mega-transfers/sec whereas today's controllers, such as the Sandforce ones used by OCZ, support up to 166MT/sec or so. The device also supports 1TB capacity SSDs and has an 8-channel design with 16-way interleaving that supports ONFI 2.0 and Toggle 1.0. This will provide sequential bandwidth up to 500MB/sec.

There is a 400MHz DDR3 DRAM cache facility that can support up to 512MB of such cache. The controller is optimised for 8K writes – which matches, the 8K page size typical of the latest flash, OCZ says.

SSDs powered by this controller can have their boot time cut in half compared to today's controllers because of OCZ's boot-reduction time algorithms. This, OCZ says, will support "instant on" requirements.

It supports TRIM, SMART, NCQ with a queue depth of 32, 70-bit ECC, and many over-provisioning options to extend the SSD's working life. It also has OCZ proprietary Ndurance technology to extend flash's working life.

OCZ says it is available for evaluation now by OEMs and, we presume, OCZ will be using it in its own flash products. We're looking at 1TB SSDs using TLC flash, shipping sequential data out at 500MB/sec which boot quickly, and could be combined to provide multi-TB flash data stores. Parallelising data access would provide multi-GB/sec I/O. The flash future looks bright. ®

The essential guide to IT transformation

More from The Register

next story
The Return of BSOD: Does ANYONE trust Microsoft patches?
Sysadmins, you're either fighting fires or seen as incompetents now
Microsoft: Azure isn't ready for biz-critical apps … yet
Microsoft will move its own IT to the cloud to avoid $200m server bill
Oracle reveals 32-core, 10 BEEELLION-transistor SPARC M7
New chip scales to 1024 cores, 8192 threads 64 TB RAM, at speeds over 3.6GHz
Docker kicks KVM's butt in IBM tests
Big Blue finds containers are speedy, but may not have much room to improve
US regulators OK sale of IBM's x86 server biz to Lenovo
Now all that remains is for gov't offices to ban the boxes
Gartner's Special Report: Should you believe the hype?
Enough hot air to carry a balloon to the Moon
Flash could be CHEAPER than SAS DISK? Come off it, NetApp
Stats analysis reckons we'll hit that point in just three years
Nimble's latest mutants GORGE themselves on unlucky forerunners
Crossing Sandy Bridges without stopping for breath
prev story

Whitepapers

5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.