Feeds

ARM daddy simulates human brain with million-chip super

RISC chip choice is a no-brainer

Securing Web Applications Made Simple and Scalable

While everyone in the IT racket is trying to figure out how many Intel Xeon and Atom chips can be replaced by ARM processors, Steve Furber, the main designer of the 32-bit ARM RISC processor at Acorn in the 1980s and now the ICL professor of engineering at the University of Manchester, is asking a different question, and that is: how many neurons can an ARM chip simulate?

The answer, according to Furber's SpiNNaker project, which is being done in conjunction with Andrew Brown of the University of Southampton, is that an ARM core can simulate the activities of around 1,000 spiking neurons. And the SpiNNaker project is going to attempt to build a supercomputer cluster with 1 million processors to simulate the activities of around 1 billion neurons. Depending on who you ask – and who you are talking about, how old they are, and how much drinking and brown acid they have done – the human brain has somewhere on the order of 80 to 90 billion neurons. So even with the impressive million-core SpiNNaker machine, Furber and Brown are only going to be able to simulate about 1 per cent of the complexity inherent in the human brain.

Steve Furber

ARM daddy and UofM researcher
Steve Furber

Scale model human brain

As Furber and Brown explain in their paper (PDF) describing the SpiNNaker project, they hope that by creating a silicon analog, they can simulate a more sophisticated neural network (including the spiking behavior that gets neurons to cause other neurons to fire and thus performing the data storage and data processing inside our heads) and get a better sense of how the brain really works. Something funky is taking place between the low-level function of a neuron, which is pretty well understood according to Furber and Brown, and the larger scale of the brain itself, which we can watch with magnetic resonance imaging. And it is not just thinking about sex, either. But the suspicion is that cognition has to do with the cumulative spiking effect between large numbers of neurons.

"Of greatest interest in this work is, of course, the fundamental question of how concurrency is exploited in the biology that we are trying to model," the two researchers write. "The brain is itself a massively-parallel system comprising low performance asynchronous components. Those components, neurons, operate at timescales of a millisecond or greater, and the primary means of information exchange is through the emission of electrical 'spike' events. These spikes seem to carry no information in their amplitude or impulse, they are pure asynchronous events that carry information only in the time at which they occur."

So where is information in the brain encoded? The oldest theory, say Furber and Brown, is that the spiking rate of a neuron is where data is encoded, but this theory, they say, doesn't hold water. There is some speculation that data is encoded in the order in which populations of neurons fire, and this, among other things, is what the researchers hope to put to the test as they simulate a 1/100th scale human brain on a million ARM cores.

The Essential Guide to IT Transformation

More from The Register

next story
Manic malware Mayhem spreads through Linux, FreeBSD web servers
And how Google could cripple infection rate in a second
EU's top data cops to meet Google, Microsoft et al over 'right to be forgotten'
Plan to hammer out 'coherent' guidelines. Good luck chaps!
US judge: YES, cops or feds so can slurp an ENTIRE Gmail account
Crooks don't have folders labelled 'drug records', opines NY beak
FLAPE – the next BIG THING in storage
Find cold data with flash, transmit it from tape
Seagate chances ARM with NAS boxes for the SOHO crowd
There's an Atom-powered offering, too
Gartner: To the right, to the right – biz sync firms who've won in a box to the right...
Magic quadrant: Top marks for, er, completeness of vision, EMC
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
The Essential Guide to IT Transformation
ServiceNow discusses three IT transformations that can help CIO's automate IT services to transform IT and the enterprise.
Mobile application security vulnerability report
The alarming realities regarding the sheer number of applications vulnerable to attack, and the most common and easily addressable vulnerability errors.
How modern custom applications can spur business growth
Learn how to create, deploy and manage custom applications without consuming or expanding the need for scarce, expensive IT resources.
Consolidation: the foundation for IT and business transformation
In this whitepaper learn how effective consolidation of IT and business resources can enable multiple, meaningful business benefits.