Feeds

ANU plasma thruster gets research boost

Hopefully to Europe, and beyond

Security for virtualized datacentres

Plasma drives are much-beloved of both science fiction and real -world space research, for good reason: they have a good thrust-to-fuel ratio. Now, more than ten years' work by Australian National University physicists will get a research boost on its way to space via a European satellite.

The $3.1 million grant from the federal government will be used by researchers at the ANU's Plasma Research Laboratory to help build its Helicon Double Layer Thruster (HDLT). If its work is successful, the HDLT driver could be in space as early as 2013 via a collaboration between the ANU, Surrey University's space centre, and aerospace firm EADS-Astrium.

In the hierarchy of propulsion, conventional chemical rockets sit at the bottom of the heap, because they need huge amounts of fuel to produce thrust. Ion and plasma-based drives get more bang for the buck, because they deliver high exhaust velocities from smaller amounts of fuel. That leaves more space - or rather mass - available for payloads.

The ANU HDLT, invented by professor Christine Charles, isn't ready to lift payloads from Earth yet. As project leader professor Rod Boswell explains, the engine is less powerful than a chemical rocket, but should have a longer life-span.

Because of the high temperatures generated in plasma drives, the trick is confining the hot gas without it destroying the chamber. The HDLT uses a magnetic field, uniform in the "source tube" (where a gas like Krypton or Xenon is heated by a radio antenna) and expanding away from the source. The plasma creates its own electrical layer near the exit of the source tube, which accelerates the source plasma to high exhaust velocities.

The system requires external power only to maintain the plasma and the magnetic field: the electrical gradient that directs the plasma is the result of plasma density and the geometry of the magnetic field, which means it doesn’t need to power accelerating grids. In space, the researchers hope that less than one gram of propellant would power a five-hour burn.

In the current project, the ANU is working to deliver a device suitable for keeping a satellite on-station. This would demonstrate whether, as expected, the HDLT's long theoretical life would consequently help extend satellites' life. ®

Security for virtualized datacentres

More from The Register

next story
Boffins who stare at goats: I do believe they’re SHRINKING
Alpine chamois being squashed by global warming
What's that STINK? Rosetta probe shoves nose under comet's tail
Rotten eggs, horse dung and almonds – yuck
Comet Siding Spring revealed as flying molehill
Hiding from this space pimple isn't going to do humanity's reputation any good
Kip Thorne explains how he created the black hole for Interstellar
Movie special effects project spawns academic papers on gravitational lensing
Experts brand LOHAN's squeaky-clean box
Phytosanitary treatment renders Vulture 2 crate fit for export
LONG ARM of the SAUR: Brachially gifted dino bone conundrum solved
Deinocheirus mirificus was a bit of a knuckle dragger
prev story

Whitepapers

Why cloud backup?
Combining the latest advancements in disk-based backup with secure, integrated, cloud technologies offer organizations fast and assured recovery of their critical enterprise data.
A strategic approach to identity relationship management
ForgeRock commissioned Forrester to evaluate companies’ IAM practices and requirements when it comes to customer-facing scenarios versus employee-facing ones.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
New hybrid storage solutions
Tackling data challenges through emerging hybrid storage solutions that enable optimum database performance whilst managing costs and increasingly large data stores.