Feeds

AMD trumpets next-gen GPU architecture

The road to the Holodeck

High performance access to file storage

Fusion Summit AMD has trumpeted its next-generation GPU architecture, painting the design as a radical departure that has one foot in the graphics world and the other in what AMD, Microsoft, ARM, and others dub "heterogeneous computing".

Essentially, the new architecture is a parallel-processor, throughput engine that can serve both graphics and compute tasks. For some time, AMD GPUs – formerly ATI-branded – have been based on multiple graphics engines with VILW (very long instruction word) cores. Not so AMD's next-generation parts.

Speaking at the company's Fusion Developer Summit on Thursday, AMD graphics CTO Eric Demers described the new GPU as an MIMD (multiple-instruction-stream, multiple-data-stream) architecture with a SIMD (single-instruction-stream, multiple-data-stream) vector array. "There are four wavefronts, every cycle, executing on the vector and scalar units, And these can come from four completely different applications or from the same application," he explained.

"And then there's up to 40 wavefronts living in a CU [compute unit], that any four of which can run at any cycle, so its sorta got SMT [simultaneous multi-threading] properties."

But he doesn't have a good name for it. "The reality is that it's leveraging all that goodness from all those different architectures, and to put one perfect label on it would not be fair," he said.

AMD's goal is to blur the line between the data which CPUs and GPUs are munching on. "Our plan is that ... eventually all these devices – whether they're CPUs or GPUs – are in the same unified 64-bit address space."

Although the first parts based on the new architecture should appear by the end of this year, Demers laid out a series of capabilities that AMD plans to roll out between the first new-architecture GPUs and then 'incrementally" by 2014: GPU support for C++ and other "high-level constructs", virtual address space, support for page faults, memory coherence at the L2 level and shared among the CUs and between the CPU and GPU, and the ability to save and reload the device state.

This last ability, Demers said, will make context switching "much, much easier", and although some fixed-function elements in the pipe will require some work, "fundamentally this core can support and will support context switching and preemption."

These capabilities are not limited to just discrete graphics. "I'm not talking about APU, I'm not talking about GPU, I'm talking about an IP of a core that's going to be used in all our products going forward," he said. "Over the next few years we're going to be bringing you all of this throughout all our products that have GPU cores."

Demers added that the new architecture won't require apps to be rewritten to take advantage of it. "Almost without exception, everything runs the same or faster," he said. "There are going to be cases, particularly on the compute side and more so on the graphics side where this really gives you a fourfold jump."

But he aims to provide more than speed. A lot more. "I want to create realities that you can't tell that you're not looking through a window," he said. "In fact, I'd rather that you can't tell you're not inside my reality."

AMD's next-generation graphics architecture, he contends, is one step on what he called "the road to the Holodeck." It's part of the continued progression from the fixed-function, graphics-only GPUs of the mid-1990s to the simple shaders of 2002 to 2006, and on to the introduction of parallel-core, unified shader architectures of 2007 and later.

His point in this historical review wasn't mere misty-eyed reminiscence. He was leading his audience from GPUs' graphics-only past to their increasingly compute-supportive role in what AMD envisions as the heterogeneous-computing future, in which GPUs are equal partners with CPUs and specialized cores. ®

High performance access to file storage

More from The Register

next story
Report: Apple seeking to raise iPhone 6 price by a HUNDRED BUCKS
'Well, that 5c experiment didn't go so well – let's try the other direction'
Video games make you NASTY AND VIOLENT
Especially if you are bad at them and keep losing
Microsoft lobs pre-release Windows Phone 8.1 at devs who dare
App makers can load it before anyone else, but if they do they're stuck with it
Nvidia gamers hit trifecta with driver, optimizer, and mobile upgrades
Li'l Shield moves up to Android 4.4.2 KitKat, GameStream comes to notebooks
Gimme a high S5: Samsung Galaxy S5 puts substance over style
Biometrics and kid-friendly mode in back-to-basics blockbuster
AMD unveils Godzilla's graphics card – 'the world's fastest, period'
The Radeon R9 295X2: Water-cooled, 5,632 stream processors, 11.5TFLOPS
Zucker punched: Google gobbles Facebook-wooed Titan Aerospace
Up, up and away in my beautiful balloon flying broadband-bot
Sony battery recall as VAIO goes out with a bang, not a whimper
The perils of having Panasonic as a partner
NORKS' own smartmobe pegged as Chinese landfill Android
Fake kit in the hermit kingdom? That's just Kim Jong-un-believable!
prev story

Whitepapers

Mainstay ROI - Does application security pay?
In this whitepaper learn how you and your enterprise might benefit from better software security.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
3 Big data security analytics techniques
Applying these Big Data security analytics techniques can help you make your business safer by detecting attacks early, before significant damage is done.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Mobile application security study
Download this report to see the alarming realities regarding the sheer number of applications vulnerable to attack, as well as the most common and easily addressable vulnerability errors.