Feeds

PCM prototype beats PCIe flash

Student boffins' box slower at large writes though

Boost IT visibility and business value

A first-generation Phase Change Memory device has been built, faster than OCZ's VeloDrive PCIe flash card with random blockI/O but slower with sequential writes.

University of California, San Diego (UCSD) student boffins in the Computer Science and Engineering department at the Jacobs School of Engineering built their Moneta device using Phase Change Memory (PCM) chips from Micron. These use electricity to change the state of a Chalcogenide alloy from poly-crystalline to amorphous and back again.

The two states have differing resistance, read with a lesser electric current. Micron obtained the technology when it bought Numonyx. PCM technology promises to be faster than flash, but has proved difficult to productise.

The UCSD team built a Moneta emulation system in 2010, using FPGA and DRAM. It attached to its host computer system via an eight-lane PCIe 1.1 interface that provided a 2GB/sec full-duplex connection (4GB/sec total). They realised that building the PCM hardware was only one side of the coin; storage software code in device drivers and the operating system (OS) needed to change as well, and stop assuming the target storage device was slow.

In a 2010 research paper (pdf) they calculated Moneta's storage performance using the hardware emulation system:

Results for a range of IO benchmarks demonstrate that Moneta outperforms existing storage technologies by a wide margin. Moneta can sustain up to 2.2GB/sec on random 4KB accesses, compared to 250MB/sec for a state-of-the-art flash-based SSD. It can also sustain over 1.1 million 512 byte random IO operations per second [IOPS]. While Moneta is nearly 10× faster than the flash drive, software overhead beyond the IO stack (e.g., in the file system and in application) limit application level speedups: Compared to the same flash drive, Moneta speeds up applications by a harmonic mean of just 2.1×, demonstrating that further work is necessary to fully realise Moneta’s potential at the application level.

PCM prototype performance

The team has now built a Moneta system using Micron PCM chips. These are installed on Onyx cards. Judging by the hardware seen in the pictures below it is clear that the research team has had a lot of help from Micron and other identified partners; BEEcube and Xilinx, to be able to build such a sophisticated research device.

Onyx PCM card

Onyx Phase Change Memory card (UCSD)

The essential guide to IT transformation

Next page: PCM software

More from The Register

next story
The Return of BSOD: Does ANYONE trust Microsoft patches?
Sysadmins, you're either fighting fires or seen as incompetents now
Microsoft: Azure isn't ready for biz-critical apps … yet
Microsoft will move its own IT to the cloud to avoid $200m server bill
Oracle reveals 32-core, 10 BEEELLION-transistor SPARC M7
New chip scales to 1024 cores, 8192 threads 64 TB RAM, at speeds over 3.6GHz
Docker kicks KVM's butt in IBM tests
Big Blue finds containers are speedy, but may not have much room to improve
US regulators OK sale of IBM's x86 server biz to Lenovo
Now all that remains is for gov't offices to ban the boxes
Gartner's Special Report: Should you believe the hype?
Enough hot air to carry a balloon to the Moon
Flash could be CHEAPER than SAS DISK? Come off it, NetApp
Stats analysis reckons we'll hit that point in just three years
Dell The Man shrieks: 'We've got a Bitcoin order, we've got a Bitcoin order'
$50k of PowerEdge servers? That'll be 85 coins in digi-dosh
prev story

Whitepapers

5 things you didn’t know about cloud backup
IT departments are embracing cloud backup, but there’s a lot you need to know before choosing a service provider. Learn all the critical things you need to know.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.
Rethinking backup and recovery in the modern data center
Combining intelligence, operational analytics, and automation to enable efficient, data-driven IT organizations using the HP ABR approach.
Next gen security for virtualised datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.