Feeds

Making a storage mountain out of a molecule

Depleted uranium and a magnetic story

Protecting against web application threats using SSL

Nottingham university boffins have devised a depleted uranium molecule that keeps a constant magnetic state and is many times smaller than bits on hard disk drives, promising 1,000-fold increases in hard drive capacity - if it can be turned into a product before solid state storage takes over.

The Notts team, led by Dr Steven Liddle, created a depleted uranium molecule built from two uranium atoms with a bridging molecule of toluene and termed it a single molecule magnet (SMM). Liddle's Nature Chemistry paper ($32 fee) talks of a "delocalized arene-bridged diuranium" SMM. A video, featuring a boffin with a Back To The Future hair-style - we're not joking - provides the following chemistry name for the molecule - bis(bis(N-trimethylsilyliminodiphenylphosphorano)methane uranium dodo)toluenediide.

Uranium single molecule magnet

The Uranium molecule used in the single molecule magnet.

It holds its magnetic state stably if kept at a low temperature, around two degrees above absolute zero. Such single molecule magnets are a thousand or more times smaller than the few hundred nananometres wide magnetic grains found in today's fourth generation perpendicular magnetic recording (PMR) media used on hard disk drives. However their magnetic stability breaks down as temperatures climb towards everyday room temperature. The temperature level dividing the stable from the unstable magnetic state is called the blocking temperature.

Best of both worlds

Liddle said: "The inherent properties of uranium place it between popularly researched transition and lanthanide metals and this means it has the best of both worlds. It is therefore an attractive candidate for SMM chemistry, but this has never been realised in polymetallic systems which is necessary to make them work at room temperature.”

He thinks that if the spin state of the molecule is increased then this will lift the blocking temperature, and the way to do that is to add more uranium atoms to it.

There are other problems. Unless the paper's costly full text in Nature Chemistry discusses it there is no method described to change the magnetism of the molecule. The magnetism comes from the molecule itself, not from an applied burst of electricity, and if it can't be changed then that's the end of the IT storage relevance.

Let's assume that that is not a problem though, and that there is a way to do it. Another problem is one of timing. It's going to take years to do the research to find a SMM that's stable at room temperature, to find a way to change its magnetic state, and then to devise recording heads and media that use this technology at an affordable price, and that is a whole huge separate can of worms.

Let's say it is 1,000 times denser areally speaking than current hard drives; what does that mean? The I/O density will be abysmally atrocious. Just how long will it take to backup a 3 petabyte drive with one read head per platter surface? We should envisage a time scale in days unless the spin speed and/or the number of read/write heads is increased. As for RAID re-builds, forget it; we're talking weeks.

Then there is the problem of controlling read/write head movements a thousand times more precisely than we do at the moment. Frankly, the El Reg storage desk thinks this is bonkers; the chemistry boffins obviously know diddly squat about the practicalities of hard disk drive electro-mechanics and RAID rebuilds. This SMM stuff isn't for spinning disks, it's a solid state technology if ever we saw one.

Liddle said SMM study could also help "realise high performance computing techniques such as quantum information processing and spintronics.” ®

Choosing a cloud hosting partner with confidence

More from The Register

next story
Wanna keep your data for 1,000 YEARS? No? Hard luck, HDS wants you to anyway
Combine Blu-ray and M-DISC and you get this monster
Google+ GOING, GOING ... ? Newbie Gmailers no longer forced into mandatory ID slurp
Mountain View distances itself from lame 'network thingy'
US boffins demo 'twisted radio' mux
OAM takes wireless signals to 32 Gbps
Apple flops out 2FA for iCloud in bid to stop future nude selfie leaks
Millions of 4chan users howl with laughter as Cupertino slams stable door
'Kim Kardashian snaps naked selfies with a BLACKBERRY'. *Twitterati gasps*
More alleged private, nude celeb pics appear online
Students playing with impressive racks? Yes, it's cluster comp time
The most comprehensive coverage the world has ever seen. Ever
Run little spreadsheet, run! IBM's Watson is coming to gobble you up
Big Blue's big super's big appetite for big data in big clouds for big analytics
Seagate's triple-headed Cerberus could SAVE the DISK WORLD
... and possibly bring us even more HAMR time. Yay!
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.