Feeds

Intel keeps heat on AMD with Tri-Gate transistors

Don't count that Bulldozer market share just yet

Remote control for virtualized desktops

Can a 32 nanometer Bulldozer jump a 22 nanometer Tri-Gate transistor to cross an Ivy Bridge? In 2012, we're gonna find out.

Advanced Micro Devices and its foundry partner, GlobalFoundries, are just ramping up production on 32 nanometer wafer baking processes, in theory catching up to Intel, which has had 32 nanometer processes in production in late 2009 and shipping to end user customers across PC and server chips since early 2010. AMD's plan – or more precisely, the plan after AMD rejiggered its deal with GlobalFoundries to motivate its former foundry to focus on chip yields for the 32 nanometer fabbing in its Dresden facilities – is to get the 32 nanometer processes ramped up first on desktop and laptop PCs with the "Llano" APU (which combines the CPU and a GPU on a single die).

Then, comes the first chips using the "Bulldozer" cores, specifically the sixteen-core "Interlagos" Opteron processors two-socket and four-socket servers sporting the G34 sockets. These will ship for revenue in the "late summer" with products shipping from vendors in the third quarter.

AMD is ramping up 32 nanometer processes and a new chip design, but Intel is already gearing up to start production on its 22 nanometer process and its related Tri-Gate 3D transistor, the combination of which looks to give Intel a greater advantage in performance and power efficiency than many had been expecting from the chip giant's shrink to 22 nanometers.

The Tri-Gate transistors that will be implemented in Intel's its 22 nanometer "tick" for its "Ivy Bridge" family of processors, which are themselves tweaked versions of the "Sandy Bridge" Core PC and Xeon server processors that are a "tock" in that they implement a new microarchitecture. Intel changes the design in one generation, then the process in the next, like an old grandfather clock, ticking and tocking. Intel didn't make any promises about performance or thermals at the processor level, but the specs for the transistors themselves are certainly making everyone think Intel is about to make a big leap here, taking away another advantage that AMD could use to peddle its processors.

In a briefing earlier this week, Mark Bohr, director of process architecture and a Senior Fellow at Intel, said that the properties of the Tri-Gate transistor offered a factor of ten reduction in current leakage compared to a 22 nanometer transistor implemented in the 2D (or planar) transistor designs used in the industry for decades. From the graphs that Bohr showed, that 22 nanometer planar design would yield about 15 per cent faster transistor switching at 1.0 volts and maybe 10 per cent at 0.7 volts.

But adding the Tri-Gate transistor allowed Intel to boost gate switching on the transistor by 18 per cent at 1.0 volts and by an even more important 37 per cent at 0.7 volts. The net effect of this is that a transistor running at 0.8 volts using the 22 nanometer Tri-Gate transistors has the same performance as a 32 nanometer chip running at 1.0 volts, and with a 50 per cent reduction in active power. And the process, which Intel is convinced it can do in high volume manufacturing, only adds 2 to 3 per cent to the cost of a wafer.

Chew on that for a while.

Intel is working to put the 22 nanometer processes and their 3D gates into production in the second half of 2011, about when AMD will start bragging it has 32 nanometer chips in the field from GlobalFoundries. The process will be used first in an Ivy Bridge chip, shown below, and the word on the street is that the very first chip will be a variant of the Xeon E3 processor for high-end workstations and low-end servers.

Intel Ivy Bridge processor die

Unidentified Ivy Bridge processor using 22 nanometer Tri-Gate transistors

Intel showed off some desktop and laptop machines using early Ivy Bridge chips. The PC roadmap calls for Intel to put Ivy Bridge Core chips into the LGA 1155 socket and pair them with a chipset called "Panther Point". The desktop PC platform is code-named "Maho Bay" while the mobile platform is called "Chief River". Further details were not divulged.

Intel did not share any server processor roadmaps this week in making the announcements, except to say that the Xeon variants of the Ivy Bridge chips would certainly use the new 22 nanometer process, too. The analyst community got a little bit more data, as you can see below, but not a lot:

Intel's 22nm server chip roadmap

Intel's 22 nanometer server chip roadmap (click to enlarge)

As you can see, Intel will be finishing up the Sandy Bridge Xeon rollout using its 32 nanometer processes, as well as sticking with 32 nanometers for the future "Poulson" Itaniums. The new data here is not that the Ivy Bridge Xeons will use 22 nanometer processes, but that the future "Kittson" Itanium chips will as well. And so will the future "Knights Corner" family of many-cored co-processors that Intel hopes to commercialize before AMD and Nvidia take complete control of the co-processor racket with their GPU co-processors.

On the Atom front, the Intel has been quiet, but obviously with the Tri-Gate transistors and the 22 nanometer shrink, Intel should be able to field more power-efficient, low-end Atom parts that are more suitable for smartphones, tablets, and consumer electronics. It should also be able to create Atoms that have more oomph in the same power envelope – perhaps a lot more, like twice as many cores or a significant jump in single-thread performance.

It remains to be seen if these future Atoms based on Tri-Gate/22 nanometer technology will be able to take on the ARM collective, however. And even if the future Atoms don't hold out well against the Cortex-A15 derivatives due in late 2012 or early 2013 for tiny computers, they may nonetheless be a boon for micro servers. ®

Intelligent flash storage arrays

More from The Register

next story
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
NASA launches new climate model at SC14
75 days of supercomputing later ...
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
You think the CLOUD's insecure? It's BETTER than UK.GOV's DATA CENTRES
We don't even know where some of them ARE – Maude
Cloud unicorns are extinct so DiData cloud mess was YOUR fault
Applications need to be built to handle TITSUP incidents
BOFH: WHERE did this 'fax-enabled' printer UPGRADE come from?
Don't worry about that cable, it's part of the config
Stop the IoT revolution! We need to figure out packet sizes first
Researchers test 802.15.4 and find we know nuh-think! about large scale sensor network ops
DEATH by COMMENTS: WordPress XSS vuln is BIGGEST for YEARS
Trio of XSS turns attackers into admins
prev story

Whitepapers

Why and how to choose the right cloud vendor
The benefits of cloud-based storage in your processes. Eliminate onsite, disk-based backup and archiving in favor of cloud-based data protection.
Getting started with customer-focused identity management
Learn why identity is a fundamental requirement to digital growth, and how without it there is no way to identify and engage customers in a meaningful way.
Go beyond APM with real-time IT operations analytics
How IT operations teams can harness the wealth of wire data already flowing through their environment for real-time operational intelligence.
Why CIOs should rethink endpoint data protection in the age of mobility
Assessing trends in data protection, specifically with respect to mobile devices, BYOD, and remote employees.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.