Feeds

Google Go boldly goes where no code has gone before

How to build all the Google stuff Google won't talk about

Intelligent flash storage arrays

On the goroutine

But the point is that Go gives you concurrency, a concurrency specifically suited to modern systems programming. It gives you concurrency that runs close the metal, but it also gives you a new breed of concurrency you won't find in other languages, including Erlang. And this comes from goroutines.

Goroutines aren't threads or lightweight threads. They aren't callbacks. They're processes within a single address space that can communicate with each other. Communication is provided by "channels" running between goroutines, and these channels can transmit multiple signals at once. You can use a channel to send any variable, including other channels.

These processes can run across multiple operating system threads, but crucially, they can also run within threads, letting you handle myriad tasks with a relatively small memory footprint. "The idea is that goroutines time-slice on OS threads, so you can have any number of goroutines being serviced by a smaller number of OS threads, and the Go runtime is smart enough to realize which of those goroutines is blocking something and go off and do something else," Ketelsen says.

"It's using the runtime to 'multitask' using fewer OS resources. Goroutines are much lighter than a thread. You can have many thousands of them running without taking a performance hit."

This is ideal, Rob Pike says, for something like a web server, something that talks to many thousands of clients. "Linux, for many years, had very bad thread support. It wasn't practical to use thread-per-request model for web servers. Threads are so heavy. They require so much space in memory. But it's practical to use a goroutine-per-request model," he explains.

"Goroutines use very small kilobytes of memory and yet they can represent the entire application stream of a client action inside the server. ... You can imagine tens of thousands of goroutines running in a server. We've run benchmarks with tens of thousands of goroutines, and they run very efficiently."

What's more, the channel setup is conducive to communication across a network. Pike points to a channel's ability to send a channel – something akin to, say, a phone call sending a phone call. This is a particularly nice way, Pike says, of building a multiplexer. "When I send a request to the service at the other end of the channel, I can include in that request a channel that only I know about, so the server has to respond only to me."

"That lets you halve the amount of muxing you need to do. You use a mux to get to the service, but then the service has a direct channel back to you. It just returns the answer back to you. You don't have to send that back through the mux."

The Go Gopher

Go Gopher

Go's concurrency setup, Keith Rarick says, mapped perfectly to Heroku's Doozer project. Paxos, the algorithm at the heart of Chubby, operates using independent and concurrent processes that pass each other messages. With Doozer, those processes become goroutines, and messages are passed via channels. "These tools let us avoid complex bookkeeping and stay focused on the problem at hand," Keith Rarick and Blake Mizerany said in a recent blog post. "We are still amazed at how few lines of code it took to achieve something renowned for being difficult."

This is exactly the sort of thing Go was designed for. And presumably, Google is using the language for similar purposes. In May of 2010, Rob Pike announced that the company was using Go for "some production" stuff, but he declined to provide specifics. And he still declines to provide specifics. "Go is being used for lots of things," he tell us. Andrew Gerrand, another member of the Go team, says the language is being used on a "small number of Google systems", and in all likelihood, these systems play a role in the distributed infrastructure that spans Google's worldwide network of data centers.

Top 5 reasons to deploy VMware with Tegile

Next page: The New Node?

More from The Register

next story
Preview redux: Microsoft ships new Windows 10 build with 7,000 changes
Latest bleeding-edge bits borrow Action Center from Windows Phone
Google opens Inbox – email for people too thick to handle email
Print this article out and give it to someone tech-y if you get stuck
Microsoft promises Windows 10 will mean two-factor auth for all
Sneak peek at security features Redmond's baking into new OS
UNIX greybeards threaten Debian fork over systemd plan
'Veteran Unix Admins' fear desktop emphasis is betraying open source
Entity Framework goes 'code first' as Microsoft pulls visual design tool
Visual Studio database diagramming's out the window
Google+ goes TITSUP. But WHO knew? How long? Anyone ... Hello ...
Wobbly Gmail, Contacts, Calendar on the other hand ...
DEATH by PowerPoint: Microsoft warns of 0-day attack hidden in slides
Might put out patch in update, might chuck it out sooner
prev story

Whitepapers

Choosing cloud Backup services
Demystify how you can address your data protection needs in your small- to medium-sized business and select the best online backup service to meet your needs.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
Security for virtualized datacentres
Legacy security solutions are inefficient due to the architectural differences between physical and virtual environments.
Reg Reader Research: SaaS based Email and Office Productivity Tools
Read this Reg reader report which provides advice and guidance for SMBs towards the use of SaaS based email and Office productivity tools.
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.