Feeds

Google donates a billion cores to boffins

Hundreds of teraflops for the taking

High performance access to file storage

Universities, government labs, and sometimes IT vendors donate their excess supercomputing capacity through grants to academics to help advance various sciences. Now Google is letting boffins loose on its systems.

In a blog post, Alfred Spector, vice president of research and special initiatives at the Chocolate Factory, said that Google had created an academic research grant program called the Google Exacycle for Visiting Faculty, which will donate one billion core-hours to science.

Google says that this level of computing is orders of magnitude more computing than most academics can get their hands on, no matter how big the endowment is at the university or how much research they do for government.

Google is not just giving away compute cycle on its massive server clusters to get a tax write-off on unused capacity, but to blind us with science. "Google Exacycle for Visiting Faculty is not a conventional grant program," the company claims. "We aim to stimulate advances in science and engineering research by supporting the computational needs of projects that push boundaries and reach for remarkable breakthroughs."

Google is not giving all of the billion core-hours to one lucky researcher. The plan is to solicit distinguished researchers and postdoctoral scholars from all over the globe and award them grants for jobs that can chew through at least 100 million core-hours.

Those who win the grants will do their work from Google offices and sign an employee agreement with Google for the term of the simulation. You have to pay your own travel, lodging, and living expenses while the simulations run.

The company says that large-scale genomics and protein folding simulations are the kinds of jobs it expects to most benefit from such a large number of cores to frolic upon; embarrassingly parallel jobs will do best, and "pleasantly parallel" jobs (yes that is a technical term) will work.

"The higher the CPU to I/O rate, the better the match with the system," Google says, and jobs that have minimal communication between nodes will do best. (Sounds like Gigabit Ethernet to me.) Your program has to be coded in C/C++ and compiled via Google's Native Client SDK, its tweak of the open source GNU C++ toolbox. Sorry, no Fortran or Java apps need apply. Researchers have until May 31 to apply for the capacity.

Looking ahead, Spector says that Google is thinking of extending CPU capacity grants to businesses in various industries, including biotech, financial services, manufacturing, and energy. Spector did not say that these grants would be free – he didn't say Google would charge for them, but it makes sense that it would – and is soliciting ideas from industry now on what jobs companies might want to run.

So just how much is a billion core-hours in terms of HPC capacity?

The largest cluster of Xeon machines in the world not using a proprietary interconnect of some kind is the Pleiades supercomputer at NASA's Ames Research Center. It uses Intel's old quad-core Xeon 5400 processors from two generations ago in two-socket machines; the cluster has 81,920 cores running at 2.93 GHz and links the servers together with an InfiniBand network.

Those chips can issue four floating point instructions per clock cycle per core, which works out to over 960 teraflops of aggregate peak number-crunching power. (On the Linpack floating point test, the Pleiades machine delivers 772.7 teraflops of actual performance.) If you ran the Pleiades machine flat out for a full year, you are talking about 718 million core-hours.

A grant of 100 million core-hours is around 11,408 Xeon cores running for a full year, and with modern six-core Xeon 5600 processors, you are talking about Google giving 950 server nodes. (Obviously, if you want to run that job in three months instead of 12, you have to quadruple the server node count.)

Google has millions of servers, so this is a tiny fraction of what the search giant has running in its 36 data centers. Depending on how fast you want to burn those cores, the virtual HPC cluster that Google will grant you could be rated from one to several hundred teraflops.

So the Google grants may be a tiny piece of Mountain View's capacity, but the capacity Google is putting up for grabs is a lot more than most researchers can get their hands on.

You can find out more about the the Google Exacycle for Visiting Faculty here. ®

High performance access to file storage

More from The Register

next story
Seagate brings out 6TB HDD, did not need NO STEENKIN' SHINGLES
Or helium filling either, according to reports
European Court of Justice rips up Data Retention Directive
Rules 'interfering' measure to be 'invalid'
Dropbox defends fantastically badly timed Condoleezza Rice appointment
'Nothing is going to change with Dr. Rice's appointment,' file sharer promises
Cisco reps flog Whiptail's Invicta arrays against EMC and Pure
Storage reseller report reveals who's selling what
Bored with trading oil and gold? Why not flog some CLOUD servers?
Chicago Mercantile Exchange plans cloud spot exchange
Just what could be inside Dropbox's new 'Home For Life'?
Biz apps, messaging, photos, email, more storage – sorry, did you think there would be cake?
IT bods: How long does it take YOU to train up on new tech?
I'll leave my arrays to do the hard work, if you don't mind
prev story

Whitepapers

Securing web applications made simple and scalable
In this whitepaper learn how automated security testing can provide a simple and scalable way to protect your web applications.
Five 3D headsets to be won!
We were so impressed by the Durovis Dive headset we’ve asked the company to give some away to Reg readers.
HP ArcSight ESM solution helps Finansbank
Based on their experience using HP ArcSight Enterprise Security Manager for IT security operations, Finansbank moved to HP ArcSight ESM for fraud management.
The benefits of software based PBX
Why you should break free from your proprietary PBX and how to leverage your existing server hardware.
Mobile application security study
Download this report to see the alarming realities regarding the sheer number of applications vulnerable to attack, as well as the most common and easily addressable vulnerability errors.