Feeds

Calxeda boasts of 5 watt ARM server node

Includes memory and interconnect fabric

Internet Security Threat Report 2014

Calxeda is also cooking in that homegrown interconnect, which has yet to be given a name outside of the company. It is not clear how the Calxeda interconnect will hook into the Cortex-A9 chip, but that ARM design allows for two 64-bit Advanced Microcontroller Bus Architecture (AMBA) Advanced Extensible Interface (AXI) ports, with a combined 12 GB/sec of bandwidth into the system interconnect on the chip. It may be that Calxeda is interfacing a whole different protocol onto the chip – perhaps InfiniBand or 10 Gigabit Ethernet – right down on the chip, interfacing with the AXI ports. This would be the simplest and cheapest thing to do.

Because the Cortex-A9 is only a 32-bit processor, the Calxeda server nodes will top out at 4 GB of main memory per node. That is the upper limit of addressability for a 32-bit processor, of course, and in this case, it will be a single 4 GB stick of low-power DDR3 memory in a single slot.

Freund says that a quad-core A9-derived processor, plus its memory controller, the DDR3 memory module, and the on-chip fabric interconnect will burn only 5 watts. Clock speeds were not divulged, but it will probably be somewhere between 1 GHz and 2 GHz. That is less juice than a fat DDR3 memory stick uses, forget about the Intel or AMD x64 chip.

"This gives us extremely high levels of density," says Freund. And, the fabric interconnect will allow for "multiple thousands of cores" to be lashed together and controlled as a unit. (But not in a cache-coherent, shared memory manner. Don't get the wrong idea.)

The Cortex-A9 does not have any circuits to do virtualization, but Freund says that on the workloads that Calxeda expects customers to use the chip for, they won't need hypervisors to carve up the servers. The will already have parallelized workloads that span thousands of nodes that run at very high utilization rates. On an X64 server, you use a hypervisor to plunk multiple server images on one set of chips, workloads that might only consume 5, 10, 15, or 20 per cent of the raw CPU capacity by themselves, driving up utilization of the overall system.

That said, hypervisors and their control freak add-ons are also useful for managing workloads and spreading running workloads around a cluster of machines. Freund says that Calxeda is participating in the OpenStack cloud fabric effort to see how to adapt these tools to manage bare-metal images instead of virtual images on machines using its ARM variants. The Linux community is also working on software container technology for ARM chips, too, according to Freund, which could be useful for some workloads.

Calxeda is not going to make and sell servers, but rather make chips and reference machines that it hopes other server makers will pick up and sell in their product lines. The company hopes to start sampling its first ARM chips and reference servers later this year. The first reference machine has 120 server nodes in a 2U rack-mounted format, and the fabric linking the nodes together internally can be extended to interconnect multiple enclosures together.

The initial workloads that Calxeda is targeting include internet-scale web serving, of course, as well as streaming content delivery (so long as it doesn't need compute-intensive DRM), small web application hosting, storage controllers, and big data analytics.

"NoSQL and MapReduce are a beautiful fit for these servers because of the ratio of CPU, memory, and disk and the performance per watt," says Freund. ®

Internet Security Threat Report 2014

More from The Register

next story
NSA SOURCE CODE LEAK: Information slurp tools to appear online
Now you can run your own intelligence agency
Azure TITSUP caused by INFINITE LOOP
Fat fingered geo-block kept Aussies in the dark
NASA launches new climate model at SC14
75 days of supercomputing later ...
Yahoo! blames! MONSTER! email! OUTAGE! on! CUT! CABLE! bungle!
Weekend woe for BT as telco struggles to restore service
Cloud unicorns are extinct so DiData cloud mess was YOUR fault
Applications need to be built to handle TITSUP incidents
BOFH: WHERE did this 'fax-enabled' printer UPGRADE come from?
Don't worry about that cable, it's part of the config
Stop the IoT revolution! We need to figure out packet sizes first
Researchers test 802.15.4 and find we know nuh-think! about large scale sensor network ops
SanDisk vows: We'll have a 16TB SSD WHOPPER by 2016
Flash WORM has a serious use for archived photos and videos
Astro-boffins start opening universe simulation data
Got a supercomputer? Want to simulate a universe? Here you go
prev story

Whitepapers

Go beyond APM with real-time IT operations analytics
How IT operations teams can harness the wealth of wire data already flowing through their environment for real-time operational intelligence.
10 threats to successful enterprise endpoint backup
10 threats to a successful backup including issues with BYOD, slow backups and ineffective security.
Forging a new future with identity relationship management
Learn about ForgeRock's next generation IRM platform and how it is designed to empower CEOS's and enterprises to engage with consumers.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
Website security in corporate America
Find out how you rank among other IT managers testing your website's vulnerabilities.