Feeds

Intel outs future Xeon chip porn

Get a load of them cores!

Protecting against web application threats using SSL

Twelve cores. Two amputated

There are six cores and matching L3 caches on top of the uncore, and four cores and their caches below. Yup, you got it. The Westmere-EX is actually a twelve-core design that had two cores cut off. (Intel didn't say that at ISSCC, but I am saying it and it is obviously true.) So when Intel does a process shrink to, say, 28 nanometers it will be able to tack on those two cores, crank the clocks, and put out a Xeon 7700 in fairly short order if it needs to.

Sawant said that the Westmere-EX chip had two integrated DDR3 memory controllers, which are at the bottom of the chip (labeled SMI I/O, short for Scalable Memory Interface). These controllers will support up to eight DDR3 memory channels. The chip has four QPI links along the top, and they will run at the current top-end 6.4 GT/sec speed that the Boxboro chipset supports. Intel probably won't crank QPI up to 9.6 GT/sec until another chip and chipset redesign comes down the pike. The Core C6 power states that came out with earlier "Westmere-EP" Xeon 5600 processors last year are being pulled into the Westmere-EX design.

The Westmere-EX chip will use a bi-directional ring to link all of the L3 caches to all of the cores on the chip. The routers to control this ring interconnect are to the left and right of the QPI routers at the center of the chip and have a dozen ring stops where the two rings, etched in metal layers 7 and 8 on the chip. (The Westmere-EX is implemented using Intel's nine-layer 32 nanometer wafer-baking process, which adds in strained silicon.) Here's what the rings look like, conceptually:

Intel Westmere-EX ring diagram

The rings use a 32-byte wide data path, which is half the width of a cache line, and more than 1,200 wires in layers 7 and 8 of the metal comprise this ring interconnect. With each tick of the CPU clocks, data can move one stop on the ring either clockwise or counter-clockwise.

Sawant says that the Westmere-EX chip has 1,567 pins, with 717 of the pins being dedicated to signal I/O. Here's what the Westmere-EX package looks like from the outside:

Intel Westmere-EX Package

The package measures 49.1 millimeters by 56.4 millimeters and uses a 14-layer organic substrate. The heat spreader on the top of the package measures 35.5 by 43.1 millimeters.

Choosing a cloud hosting partner with confidence

More from The Register

next story
Wanna keep your data for 1,000 YEARS? No? Hard luck, HDS wants you to anyway
Combine Blu-ray and M-DISC and you get this monster
US boffins demo 'twisted radio' mux
OAM takes wireless signals to 32 Gbps
Google+ GOING, GOING ... ? Newbie Gmailers no longer forced into mandatory ID slurp
Mountain View distances itself from lame 'network thingy'
Apple flops out 2FA for iCloud in bid to stop future nude selfie leaks
Millions of 4chan users howl with laughter as Cupertino slams stable door
Students playing with impressive racks? Yes, it's cluster comp time
The most comprehensive coverage the world has ever seen. Ever
Run little spreadsheet, run! IBM's Watson is coming to gobble you up
Big Blue's big super's big appetite for big data in big clouds for big analytics
Seagate's triple-headed Cerberus could SAVE the DISK WORLD
... and possibly bring us even more HAMR time. Yay!
prev story

Whitepapers

Secure remote control for conventional and virtual desktops
Balancing user privacy and privileged access, in accordance with compliance frameworks and legislation. Evaluating any potential remote control choice.
WIN a very cool portable ZX Spectrum
Win a one-off portable Spectrum built by legendary hardware hacker Ben Heck
Storage capacity and performance optimization at Mizuno USA
Mizuno USA turn to Tegile storage technology to solve both their SAN and backup issues.
High Performance for All
While HPC is not new, it has traditionally been seen as a specialist area – is it now geared up to meet more mainstream requirements?
The next step in data security
With recent increased privacy concerns and computers becoming more powerful, the chance of hackers being able to crack smaller-sized RSA keys increases.