Feeds

US scientists build laser-killing device

Anti-sophisticated heat beam badness

The smart choice: opportunity from uncertainty

Yale boffins have built a laser light cancelling device roughly analogous to noise-cancelling headphones.

Laser (Light Amplification by Stimulated Emission of Radiation) beams are made by pumping electricity or light into a device composed of two opposing mirrors and a so-called gain medium, such as gallium arsenide, between them. One of the mirrors is partially transparent. The gain medium, excited by the applied electricity or light, emits photons which bounce back and forth between the mirrors and the amount of light involved is amplified as more photons are emitted.

The device is a resonant optical cavity and the emitted photons oscillate between the two mirrors, with some escaping as an intense beam of coherent light through the partially transparent mirror, as the number of photons in the device continually increases.

"Coherence" means the laser beam is made of light waves with a single frequency and amplitude.

So we have light waves oscillating back and forth within the device. According to the El Reg science 101 manual, if a light wave travelling one way meets a light wave travelling the other way that has the same wavelength but is an inverse of itself, the two waves should cancel each other out. Put another way, if the incoming light enters what is effectively a loss medium instead of a gain medium it should disappear.

Laser killer chase

The laser killer chase was started last year when a team, led by Yale University physicist A Douglas Stone, published a paper theorising that a laser-killing device could be built using common or garden silicon. He then worked with another team of boffins led by Hui Cao at Yale, and they built and demonstrated a 1cm device, a Coherent Perfect Absorber (CPA) that worked almost perfectly, absorbing 99.4 per cent of the near-infrared laser light shone into it.

Anti-laser graphic

Anti-laser graphic (Yidong Chong, Yale University)

The concept is that laser beams of the same wavelength from two laser sources are shone directly at each other, meeting inside a cavity containing a silicon wafer, the loss medium, where the wavelengths bounce back and forth inside the wafer, cancelling each other out.

The Yale release says: "The wafer aligned the light waves in such a way that they became perfectly trapped, bouncing back and forth indefinitely until they were eventually absorbed and transformed into heat."

The boffins think they can build a device absorbing 99.999 per cent of incoming light, which measures only six microns across. They also expect to be able to absorb light at wavelengths visible to the human eye by altering the cavity dimensions and the loss medium.

The scientists say possible uses of the technology include an optical computer and radiological imaging or treatment of the human body for diseases such as cancer.

The device isn't exactly analogous to noise-cancelling headphones, as it doesn't generate the sound needed to cancel out incoming sound at certain wavelengths. However this is only a first step. It also can't function well as a defensive shield against laser light beams as, a) you need to generate an exactly identical opposing beam, and b) the absorbed light becomes heat, which would fry the shield.

Read more in the 18 February issue of Science (subscription). ®

The Power of One Infographic

More from The Register

next story
World Solar Challenge contender claims new speed record
One charge sees Sunswift travel 500kms at over 100 km/h
Vote now for LOHAN's stirring mission patch motto
Does the shed actually know no bounds, or what?
SMELL YOU LATER, LOSERS – Dumbo tells rats, dogs... humans
Junk in the trunk? That's what people have
The Sun took a day off last week and made NO sunspots
Someone needs to get that lazy star cooking again before things get cold around here
Boffins discuss AI space program at hush-hush IARPA confab
IBM, MIT, plenty of others invited to fill Uncle Sam's spy toolchest, but where's Google?
Beancounters tell NASA it's too poor to fly planned mega-rocket
Space Launch System would need another $400m and a lot of time
Jurassic squawk: Dinos were Earth's early FEATHERED friends
Boffins research: Ancient dinos may all have had 'potential' fluff
prev story

Whitepapers

Top three mobile application threats
Prevent sensitive data leakage over insecure channels or stolen mobile devices.
Implementing global e-invoicing with guaranteed legal certainty
Explaining the role local tax compliance plays in successful supply chain management and e-business and how leading global brands are addressing this.
Boost IT visibility and business value
How building a great service catalog relieves pressure points and demonstrates the value of IT service management.
Designing a Defense for Mobile Applications
Learn about the various considerations for defending mobile applications - from the application architecture itself to the myriad testing technologies.
Build a business case: developing custom apps
Learn how to maximize the value of custom applications by accelerating and simplifying their development.